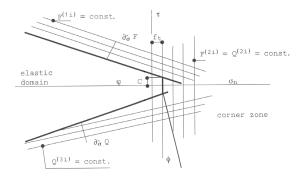
Advanced soil models. Multilaminate (ML) (extended version)


©ZACE Services Ltd

21.08.2007

ML: Assumptions

Assumptions:

- Failure may occur in the matrix material which is modeled with aid of elasto-plastic models derived from Menetrey-Willam criterion (Hoek-Brown, M-C, D-P)
- Failure may occur also along weakness planes
- Maximum 3 weakness planes can be set up

ML: Menetrey-Willam criterion

$$F(\xi, \rho, \theta) = (A_f \rho)^2 + m_f \left[B_f \rho r_f (\theta, e) + C_f \xi \right] - D_f = 0$$

$$\xi = \frac{1}{\sqrt{3}} I_1 \quad 3\theta = \frac{3\sqrt{3}}{2} J_3 J_2^{-\frac{1}{2}} \quad \rho = \sqrt{2J_2}$$

Generalized criterion	A	В	C	m	e
Huber-Misès	0	$\sqrt{\frac{3}{2}} \frac{1}{f_c}$	0	1	1
Drucker-Prager	0	$\sqrt{\frac{3}{8}} \frac{\mathbf{f_c} + \mathbf{f_t}}{\mathbf{f_c} \mathbf{f_t}}$	$\frac{3}{2} \frac{\mathbf{f_c} - \mathbf{f_t}}{\mathbf{f_c} \mathbf{f_t}}$	1	1
Rankine	0	$\frac{1}{\sqrt{6}f_t}$	$\frac{1}{\sqrt{3} f_t}$	1	$\frac{1}{2}$
Mohr-Coulomb (smooth)	0	$\frac{1}{\sqrt{6}} \frac{\mathbf{f_c} + 2\mathbf{f_t}}{\mathbf{f_c} \mathbf{f_t}}$	$\frac{1}{\sqrt{3}} \frac{\mathbf{f_c} - \mathbf{f_t}}{\mathbf{f_c} \mathbf{f_t}}$	1	$\frac{\mathbf{f_c} + 2\mathbf{f_t}}{2\mathbf{f_c} + \mathbf{f_t}}$
Hoek-Brown (smooth)	$\frac{\sqrt{1.5}}{f_c}$	$\frac{1}{\sqrt{6} f_c}$	$\frac{1}{\sqrt{3} f_c}$	$3\frac{\mathbf{f}_c^2 - \mathbf{f}_t^2}{\mathbf{f}_c \mathbf{f}_t} \frac{\mathbf{e}}{\mathbf{e} + 1}$	e

where ξ, ρ, θ are Haigh-Westergaard stress coordinates equal to:

$$\xi = \frac{1}{\sqrt{3}}I_1 \tag{1}$$