Structures: Beams/Axisymmetric shells

©ZACE Services Ltd

25.08.2009

Structural applications: Examples

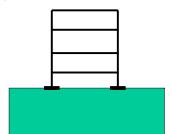
Example 1

At the material level in group Main

Frame structure (static/pushover/dynamic analysis

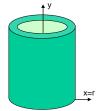
Remark: Each member is discretized by one element (not necessarily for reinforced concrete because of different amount and position of the reinforcement)

Structural applications: Examples


• Example 2

At the material level in group Main

Frame structure resisting on soil (static analysis)



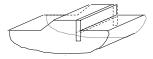
Remark: Each member is discretized by one element (not necessarily for reinforced concrete because of different amount and position of the reinforcement)

Structural applications: Examples

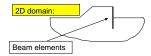
Example 3

Cylindrical water container (axisymmetry)

Remark: Here standard discretization must be used


Soil-structure interaction: Examples

• Example 1


At the material level in group Main

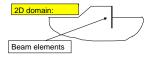
Continuum shell

Computational model (Interval beams L=1 m)

Remark: Each member is discretized with at least few elements; results are given per beam (!)

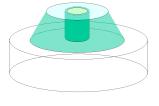
Soil-structure interaction: Examples

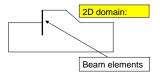
• Example 2


At the material level in group Main

Discrete rib system

Computational model (Interval between beams L is user defined)

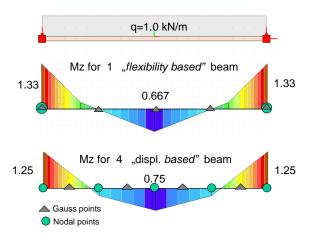



Remark: Fach member is discretized with at least few elements; results are given per beam (!)

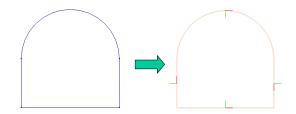
Soil-structure interaction: Examples

Example 3

Continuum axisymmetric shell

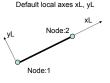


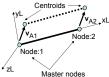
Remark: Standard discretization must be used for that case; beam is switched to the axisymmetric shell


Flexibility vs displacement based beam formulation

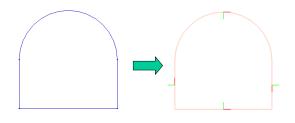
Note that result for Flexibility based beam (one per member) is exact!


- Create beams on objects
- Set director (2D)
- Set X-axis
- Set offsets


- Step:A Select objects:
 Macro-model/Objects/Select/....
- NB. Split preserves the initial beam geometry



- Create beams on objects
- Set director (2D)
- Set X-axis
- Set offsets

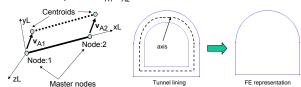


Next slide

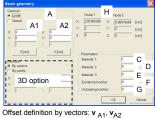
A Use method: Macro-model/Subdomain/Update/Reverse direction to flip y_t axis

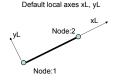
- Create beams on objects
- Set director (2D)
- Set X-axis
- Set offsets

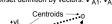
A Use method: Macro-model/Subdomain/Update/Reverse X axis

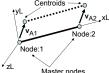


- Create beams on objects
- Set director (2D)
- Set X-axis
- Set offsets

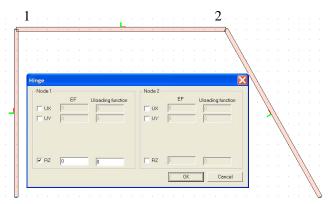

Default local axes xL, yL Node:2 Node:1


Offset definition by vectors: v A1, vA2



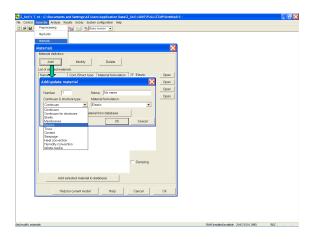

Geometrical model: FE level

- Create beams
- Set director (2D)
- Set X-axis
- Set offsets



A All methods are similar to the ones designed for Macro-model level but geometry is restricted only to the straight line segment

Geometrical model: FE level: Hinges



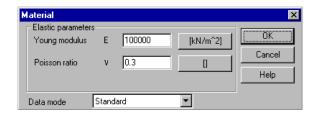
- Hinges are defined in the local $x_L y_L z_L$ coordinate system of a selected beam element
- Existence/Unloading functions can be associated with the hinge

Add new linear beam material


- Add new beam material
- Set linear mode

Next slide

Add new linear beam material


- Add new beam material
- Set linear mode

Nout olida

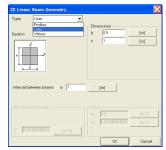
- Elastic
- Unit weight
- Geometry
- Main
- 4 Heat
- **o** Damping

Obligatory

Next slide

- Elastic
- 2 Unit weight
- Geometry
- Main
- 6 Heat
- O Damping

Optional



NB. Mass and body force multipliers visible only if Dynamics is activated in the project preselection

- Elastic
- Unit weight
- Geometry
- Main
- 6 Heat
- **o** Damping

Obligatory

2D/3D

Axisymmetric case



- Elastic
- Unit weight
- **Geometry**
- Main
- 4 Heat
- Opening

Next slide

Obligatory

NB. Use **Flexibility...** for structural applications and **Displacement...** for soil-structure interaction;

Not meaningful for axisymmetry (!)

- Elastic
- 2 Unit weight
- Geometry
- Main
- 6 Heat
- **o** Damping

Next slide

Not meaningful for linear beams

NB. Preprocessed thermal strains (by Heat project) are not handled in linear (non-layered) mode (

Nonlinear mode must be activated for that case)

Optional

- Elastic
- Unit weight
- **6** Geometry
- Main
- 6 Heat
- **o** Damping

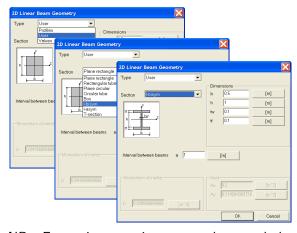


NB. Meaningful only for Dynamics

Cross section definitions

- Profiles
- User
- Values

Next slide



NB. Valid only for 2D (plane-strain) and 3D

Cross section definitions

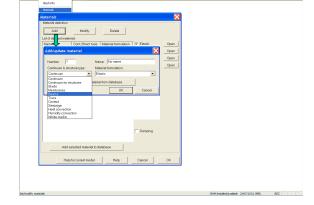
- Profiles
- User
- Values

Next slide

Cross section definitions

- Profiles
- User
- Values

Next slide

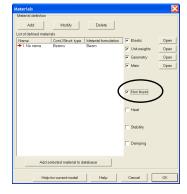

NB. Valid only for 2D (plane-strain) and 3D

Z. Soil V 7.16 - C:\Documents and Settings\All Users\Application Data\Z. Soil v2007\FULL\ZTMP\Untitled13

Analysis Results Extras System configuration Help

Add new non-linear beam material

- Add new beam material
- Set non-linear mode



_ ∂×

Nevt slide

Add new non-linear beam material

- Add new beam material
- Set non-linear mode

Ni.

Elastic

- 2 Unit weight
- Geometry
- Main
- 6 Heat
- **o** Damping

Next slide

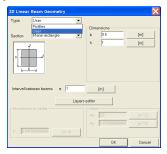
Obligatory

- These parameters are used only to specify shear modulus G as shear is decoupled from bending
- IF \boxtimes **Automatic..** mode is OFF $G = \frac{E}{2(1+\nu)}$
- IF

 Automatic.. mode is ON G will be computed from material data for layers

- Elastic
- 2 Unit weight
- Geometry
- Main
- 6 Heat
- O Damping

Optional (same as for linear)



NB. Mass and body force multipliers visible only if Dynamics is activated in the project preselection

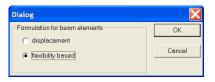
Elastic

- Unit weight
- Geometry (3)
- Main
- Heat
- Damping

Obligatory

Layers editor to Add/Delete/Modify material layers:

- Area
- Constitutive model and its properties for layers


For axisymmetry only rectangular cross section is meaningful with b = 1.0Structures: Beams/Axisymmetric shells

- Elastic
- Unit weight
- Geometry
- Main
- 6 Heat
- Opening

Next slide

Obligatory (same as for linear)

NB. Use **Flexibility...** for structural applications and **Displacement...** for soil-structure interaction;

Not meaningful for axisymmetry (!)

- Elastic
- 2 Unit weight
- Geometry
- Main
- 6 Heat
- O Damping

Optional

NB. Preprocessed thermal strains (by Heat project) are computed at each layer as

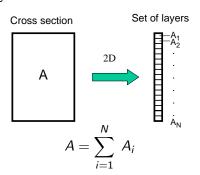
$$\Delta \varepsilon_{ox} = \Delta \varepsilon_{oy} = \Delta \varepsilon_{oz} = \alpha \Delta T$$

Next slide

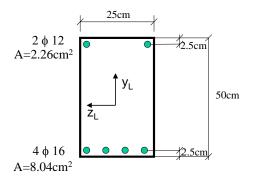
Elastic

- 2 Unit weight
- Geometry
- Main
- 6 Heat
- **Damping**

Optional (same as for linear)

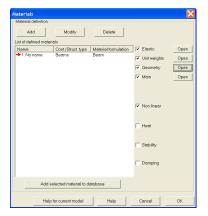


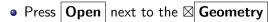
NB. Meaningful only for Dynamics


Discretization (2D) of profiles

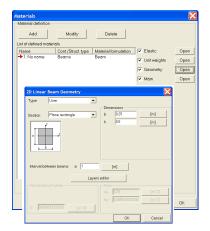
- The Profile or User predefined cross section is discretized automatically (subdivided to layers)
- By default all created layers are treated as a Core material characterized by elastic properties only
- To create a reinforced concrete cross section we can add additional layers of reinforcement

How to edit layered cross section for beam?

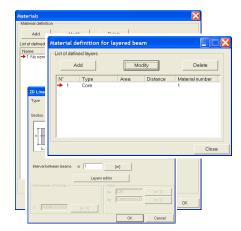

Example: Reinforced concrete cross section with elasto-plastic material models for both concrete (Core) and steel



NB. Top fibers are always placed on the positive side of y_L axis!

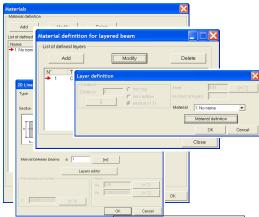

Setting Core material

Set Core cross section type

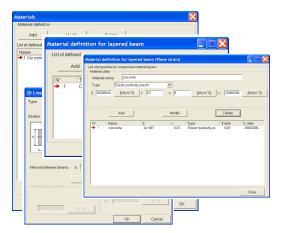


- Set Core cross section type
- **Activate layers** editor

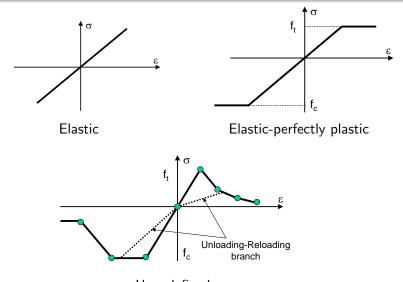
Press button Layer editor


- Set Core cross section type
- **Activate layers** editor
- **Modify Core** properties

Press button | Modify



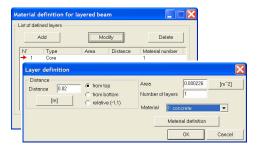
- Set Core cross section type
- **Activate layers** editor
- **Modify Core** properties
- **Enter to properties** dialog box



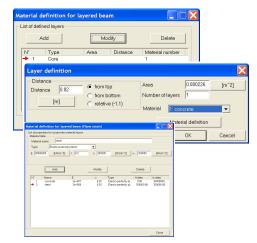
- Press button | Material definition
- From combo-box select material ID

- Set Core cross section type
- Activate layers editor
- **Modify Core** properties
- Enter to properties dialog box
- **Edit properties**

Constitutive models for uniaxial fibers



Add reinforcement


- Add reinforcement
- Set its area/location and apply proper material ID

Next slide

 Steel properties are not yet defined so we must add a new property

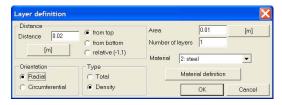
- Add reinforcement
- Set its area/location and apply proper material ID
- 8 Edit properties

Next slide

- Add reinforcement
- Set its area/location and apply proper material ID
- Edit properties
- Apply steel ID to this layer

Add reinforcement

Next slide


- Add reinforcement
- 2 Set its area/location and apply proper material ID

Nevt slide

Adding reinforcement in axisymmetric case

• Radial reinforcement (total area or density can be specified)

Circumferential reinforcement

