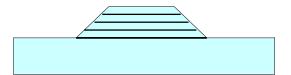
Structures: Membranes

©ZACE Services Ltd

21.08.2007



Soil-structure interaction: Example

Example

Geotextiles/geogrids

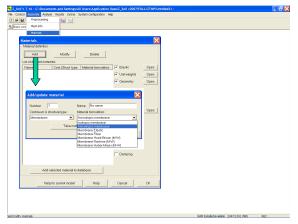
- Stabilization of steep slopes
- Retaining walls and abutments
- Road construction

Geometrical model: Macro level

Create membrane on objects Step:A Select objects:
Macro-model/Objects/Select/....

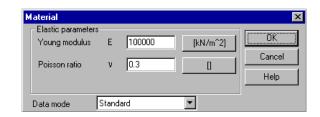
Step:B Create membs : Macro-model/Subdomain/Create/Membrane(s) on objects

NB. Split preserves the initial curved membrane geometry All methods at the FE level are similar to the ones designed for Macro-model level but geometry is restricted only to the straight line segment



Add new material for membranes

Add new membrane material



- Elastic
- 2 Unit weight
- Geometry
- 4 Heat
- Humidity
- **O** Damping

Obligatory

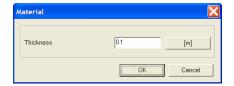
Next slide

Elastic

- 2 Unit weight
- Geometry
- 4 Heat
- **6** Humidity
- **o** Damping

Optional

NB. Mass and body force multipliers visible only if Dynamics is activated in the project preselection



Elastic

- Unit weight
- Geometry
- Heat
- Humidity
- **Damping**

Obligatory

Elastic

- 2 Unit weight
- Geometry
- 4 Heat
- **6** Humidity
- **o** Damping

Optional

NB. Preprocessed thermal strains (by Heat project) are handled by membrane elements

- Elastic
- Unit weight
- Geometry
- 4 Heat
- Mumidity
- **O** Damping

Optional

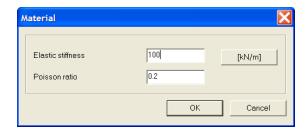
NB. Preprocessed hygral strains (by Humidity project) are handled by membrane elements

Next slide

Optional

- Elastic
- Unit weight
- Geometry
- 4 Heat
- Humidity
- **o** Damping

Next slide



Isotropic membrane: data groups


Obligatory

NB. Thickness is already included in stiffness parameter

Isotropic membrane: data groups

Next slide

Optional

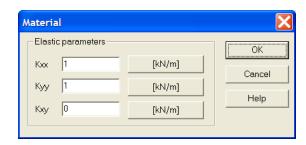
NB. Mass and body force multipliers visible only if Dynamics is activated in the project preselection

Isotropic membrane: data groups

Obligatory

Next slide

NB. Compressive force should be set to $f_c = 0$ to avoid parasitic compressive forces; a planestress elasto-plastic model with cut-off conditions for the tensile and compressive principal membrane forces is applied



Anisotropic membrane: data groups

Obligatory

NB. Thickness is already included in stiffness parameters

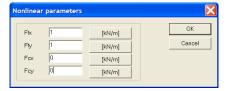
Anisotropic membrane: data groups

Next slide

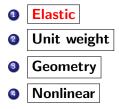
Optional

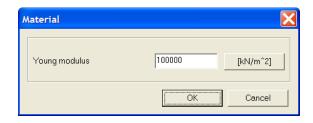
NB. Mass and body force multipliers visible only if Dynamics is activated in the project preselection

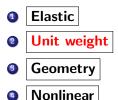
Anisotropic membrane: data groups



Next slide


Obligatory


NB. Compressive limit forces should be set to $f_{cx} = 0$, $f_{cy} = 0$ to avoid parasitic compressive forces; a plane-stress elasto-plastic model with cut-off conditions for the tensile and compressive principal membrane forces is applied



Obligatory

Fiber model generates stiffness only in one direction!

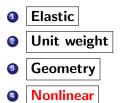
Optional

NB. Mass and body force multipliers visible only if Dynamics is activated in the project preselection

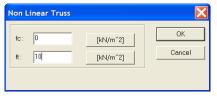
- Liastic
- Unit weight
- Geometry
- Nonlinear

Obligatory

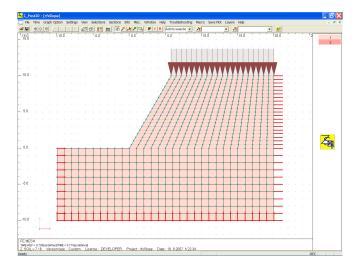
2D/3D



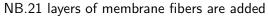
Axisymmetry



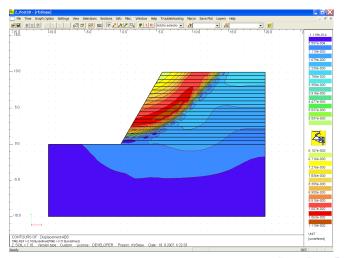
Obligatory



NB. Compressive strength should be set to $f_c = 0$ to avoid parasitic compressive stresses


Next slide

Example of limit state analysis of reinforced slope: Mesh



Example of limit state analysis of reinforced slope: Failure mode

