#### Structures: Truss elements

©ZACE Services Ltd

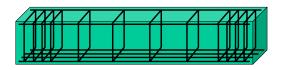
25.08.2009



# Structural applications: Examples

#### • Example 1 Cables

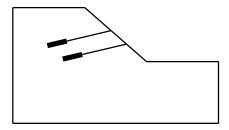



Photo by Leila Zimmermann

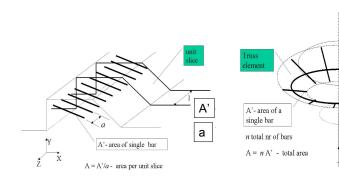
Remark: Large displacements for structures and continuum are supported ()

# Structural applications: Examples

• Example 2


#### Discrete reinforcement




# Soil-structure interaction: Example

Example

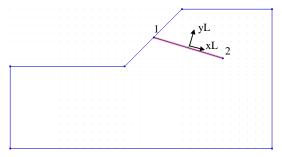
#### **Prestressed anchors**



### Geometrical model: 2D vs Axisymmetry



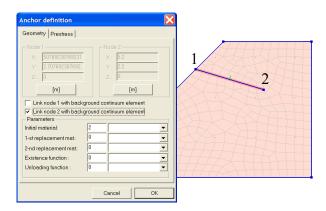
2D (plane-strain)


Axisymmetry

X = r

Ring element

### Geometrical model: Macro level


- Create truss on objects
- Step:A Select objects:
  Macro-model/Objects/Select/....
- Step:B Create trusss : Macro-model/Subdomain/Create/Truss(s) on objects
- NB. Split preserves the initial curved truss geometry



#### Geometrical model: Macro level

 Linking truss to the background mesh

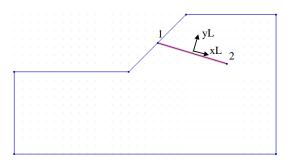
Step:A Option: Update/Parameters/Geometry (tab)



#### Geometrical model: Macro level

Prestressing

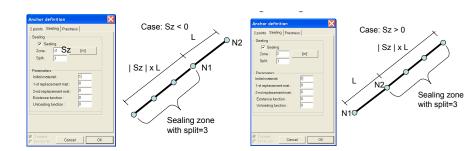
Option: Update/Parameters/Prestress (tab)




#### Remarks

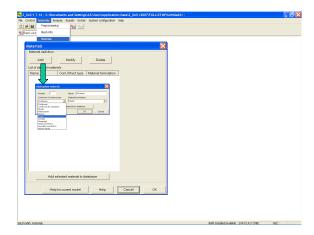
- 1 Prestress force should be checked vs plasticity limit
- Prestress is active (force is always equal to the declared one) only in active periods of the existence function; if ex.f. index=0 then it remains under permanent control

#### Geometrical model: FE level


- Create truss
- Linking truss to the background mesh
- Prestress

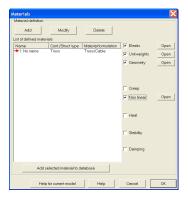


- A All methods are similar to the ones designed for Macro-model level but geometry is restricted only to the straight line segment
- B Other methods including import from the external file also are available


#### Geometrical model: FE level: Anchor head

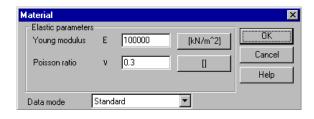
Automatic generation of an anchor head during creation of a truss element between 2nodes/points




### Add new material for truss

- Add new truss material
- Set linear/nonlinear mode




### Add new material for truss

- Add new truss material
- Set linear/nonlinear mode



- Elastic
- Unit weight
- Geometry
- Creep
- 6 Heat
- **o** Damping

#### **Obligatory**



Next slide



- Elastic
- 2 Unit weight
- Geometry
- Creep
- 6 Heat
- **o** Damping

#### **Optional**





NB. Mass and body force multipliers visible only if Dynamics is activated in the project preselection

- Elastic
- 2 Unit weight
- **Geometry**
- Creep
- 6 Heat
- **Damping**

Next slide

#### **Obligatory**

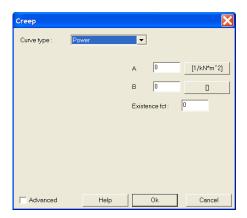
2D/3D



#### Axisymmetric case








### Elastic

- 2 Unit weight
- Geometry
- Creep
- 6 Heat
- **o** Damping



#### **Optional**





- Elastic
- Unit weight
- Geometry
- Creep
- 6 Heat
- **o** Damping

#### **Optional**



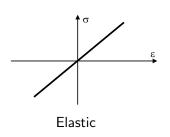
NB. Preprocessed thermal strains (by Heat project) are handled by truss elements

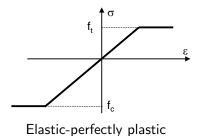




#### **Optional**

- Elastic
- Unit weight
- Geometry
- Creep
- 6 Heat
- **o** Damping




Next slide

#### NB. Meaningful only for Dynamics

# Constitutive models for truss



