Coupled hydro-mechanical landslide simulation

Matthias PREISIG
GeoMod SA, Lausanne

In collaboration with:

Laurent TACHER
Terre+, Bevaix (www.terreplus.ch)
Overview

• Intro
 – Goal of landslide simulations
 – Included physics

• Case study
 – Modeling approach, physics, simplifications
 – Calibration of model
 – Integration of FEFLOW with ZSoil
Introduction (1)

• Goals of landslide simulation
 – Risk assessment (safety factor SF), ΔSF due to construction
 – Evaluation of mitigation measures
 – Understanding driving mechanisms
Introduction (1)

• Goals of landslide simulation
 – Risk assessment (safety factor SF), ΔSF due to construction
 – Evaluation of mitigation measures
 – Understanding driving mechanisms

• Lack of reliable data: Back-analyses are often used for parameter estimation (ϕ', c')
Introduction (2)

• Included physics

- Geomechanics: \(\nabla \cdot \sigma + b = 0 \)
- Continuity: \(\frac{d}{dt} (\phi \rho) + \nabla \cdot q = Q \)
- Constitutive relations: \(\sigma(\varepsilon), q(\nabla \rho) \)
Introduction (2)

- Included physics

 - Geomechanics: $\nabla \cdot \sigma + b = 0$
 - Continuity: $\frac{d}{dt} (\phi \rho) + \nabla \cdot q = Q$
 - Constitutive relations: $\sigma(\varepsilon), q(\nabla \rho)$

- Multiple fluid phases (water, air)
- Heat equation
- Chemistry (phase changes)
Case study: Large landslide

Surface: 3-4km²
Velocity: 2-3cm/year (calm phase) decimeters/year (crisis)
Goal: Evaluate mitigation solutions
Case study:

Modeling approach (1)

- Slow moving slide \rightarrow neglect inertial forces
- Driving mechanism: Pore water pressure

1. Hydrological model simulates water pressures
2. Introduce pressures into geomechanical model
3. Compute displacements
Case study:

Modeling approach (2)

• One-way coupling

• Deformation localized in one thin shear layer (slip surface)

• Purely Mohr-Coulomb material (no creep)
Case study:

Modeling steps (1)

- Geological model, based on Geol. Atlas, boreholes and interpretation (Terre+).
Case study:

Modeling steps (3)

• Hydro-geological model
 – FEFLOW (Terre+)
Case study:

Modeling steps (4)

• Creation of geomechanical model:
 – 2D quad model in Zsoil
 – Extrude in vertical direction, intersect with layers of hydrological model
Case study:

Hydromechanical one-way coupling

• Compute pressures with FEFLOW
• Insert pressures into ZSoil:
 – Read pressures from FEFLOW
 – Interpolate pressures on ZSoil mesh
 – Export to ZSoil as load-time functions for each node
 – All procedures coded in python
Calibration

- Calibration of hydro and geomechanical models:
 - Water levels in boreholes
 - Displacements in inclinometers and GPS-points
Conclusions

• Coupled 2-software approach
• Insight in slide mechanics, structure
• Benefits of using ZSoil for this project:
 – Allows interaction/manipulation of *all* input data (.inp file contains everything)
 – Results can be processed outside PostPro (binary output file structure is documented)
 • Automation of output using e.g. python
 • Using alternative post-processors (e.g. vtk in Paraview)