JET GROUTED COLUMNS – A CASE RECORD

U. EKDAHL
Ekdahl Geo, Sweden

B. BERGGREN
Berggren Tech, Sweden
Content

1. Introduction
 - Building
 - Geological Conditions
 - Foundation Methods
 - Chosen Foundation Method

2. Design
 - Methodology
 - Requirements
 - Safety Principles
 - FEM Analyses

3. Work and Control Plan

4. Conclusions
1. Introduction

A 35 m high warehouse was successfully founded using
- Jet-grouted columns
- Surface stabilised soil layers
- Steel fibres reinforced concrete slab

Building $45 \times 92 \text{ m}^2$, height 35 m

Load effects from crane:
- Static point load 65 kN
- Dynamic point load 100 kN

Maximum acceptable inclination difference at loading 0.5×10^{-3} in SLS
1. Introduction

Geological Model

Medium dense sand
+38
Depth
2 meter

Peat
+37
GW level +37
1 meter

Loose sand
+33
4 meter

Dense sand

7 meter
1. Introduction

Geological Conditions

Mean values of some soil properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Peat</th>
<th>Loose sand</th>
<th>Medium dense sand</th>
<th>Dense sand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>kN/m³</td>
<td>12</td>
<td>17</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>Effective friction angle</td>
<td>Degr.</td>
<td>28</td>
<td>32</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>Ev2, plate loading test</td>
<td>MPa</td>
<td>-</td>
<td>10</td>
<td>20</td>
<td>40</td>
</tr>
</tbody>
</table>
1. Introduction

Characteristic value of soil properties at 5 % percentile and lognormal distribution:

\[f_k = \frac{f_m}{\exp(1.65 \cdot V)} \]

where

- \(f_k \) = Characteristic value of soil property
- \(f_m \) = Mean value of soil property
- \(V \) = Coefficient of variation

![Lognormal Distribution](image)

Lognormal Distribution
Mean Value = 1
1. Introduction

Foundation Methods

1. Soil improvement and interacting concrete slab

2. Alternative piling foundation methods were initially discussed and analysed:

 • Precast concrete piles
 • Noise and vibrations
 • Risk for damaged piles during installation
 • Settlement of existing building

 • Steel pipe piles and free bearing concrete slab
 • Not stiff enough
 • 2 000 000 USD more expensive than alt. 1 above

 • Large diameter bored piles
 • too expensive
1. **Introduction**

Chosen Foundation Method

Ground improvement
- 3 cement/slag-stabilised surface layers, Totally 1.0 m
- Jet-grouted columns, Minimum diameter 0.8 m

Concrete slab
- Thickness 200 mm, Reinforced with end-hooked steel fibres 1×49 mm, 35 kg/m³

Mean properties of stabilised sand and jet-grouted columns:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cement/Slag stabilised sand</th>
<th>Jet-grouted columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniaxial Compressive Strength, MPa</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Coefficient of Variation of Compressive Strength, %</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Tensile Strength, MPa</td>
<td>0.38</td>
<td>0.60</td>
</tr>
<tr>
<td>Modulus of Elasticity, MPa</td>
<td>8,600</td>
<td>15,500</td>
</tr>
</tbody>
</table>
2. Design

1) 2 Layers of Cement/Slag Stabilised Sand
2) Compaction
3) Jet-grouted Columns
2. Design

4) Layer #3 of Cement/Slag Stabilised Sand
5) Compaction
6) Steel Fibres Reinforced Concrete Slab

3 Layers of Stabilised Sand
300+300+400 mm

Jet-grouted Columns
D = 0.8 m

Concrete Slab, C32
Steel Fibres Reinforced 35 kg/m³
Steel fibres reinforcement

Concrete is a brittle material - Fracture energy only 120 Nm/m²

Adding 35 kg/m³ steel fibres makes concrete tougher – Fracture energy >1,600 Nm/m²

Results in smaller crack width!
Design Methodology

• Highest Geotechnical Category - GC3

• Independent reviewers in GC3 according to Swedish requirements

• Advanced numerical analyses 2D and 3D FEM in ZSOIL

• Observational Method in accordance with EuroCode to avoid exceeding limit states

• Field and laboratory tests to verify material property conditions and construction work

• Test results compared to FEM calculated deflection curves based on verified material properties
2. Design

Design requirements

• Bearing capacity has to be verified in ULS and SLS

• ULS - to ensure adequate security against material failure

• SLS - to limit fractures and deformations

• Pallet rack loads and truckloads are variable loads

• Maximum acceptable inclination difference at loading 0.5×10^{-3} in SLS
2. Design

Safety principles

• Non-linear 3D FEM analyses to calculate bearing capacity of geotechnical structures

• Mean values as input data

• Safety verification with global safety factor γ_{Rg}
 \[\gamma_{Rg} = \exp(\alpha_R \beta V_R) \]
 \[\alpha_R = \text{sensitivity factor for bearing capacity } R \]
 \[\beta = \text{safety index} \]

Here

 \[\alpha_R = 0.8 \quad \text{- Conservative value} \]
 \[\beta = 4.3 \quad \text{- Swedish requirement} \]
Safety principles

Overall uncertainty \(V_R \) related to bearing capacity \(R \):

\[
V_R = (V_f^2 + V_c^2)^{0.5}
\]

where

\(V_f \) = coefficient of variation for **bearing capacity**
\(V_c \) = coefficient of variation for **model uncertainty**

\[
V_f = (1/1.65) \times \ln \left(\frac{R_m}{R_k} \right)
\]

where

\(R_m \) = Mean value of bearing capacity
\(R_k \) = Characteristic value of bearing capacity
2. Design

Safety principles

V_c for Model uncertainty - Three criteria must be fulfilled:

- $V_c = 7\%$ may be adopted when bearing capacity of concrete slab is \textit{calculated} and when bearing capacity of soil, stabilised soil and jet-grouted columns is \textit{inspected}

- Partial coefficient $\gamma_m = 1.0$ in SLS

- Model factor $\gamma_{Rd} = 1.3$ applied on calculated displacement and inclination difference
2. Design

FEM Analyses

FEM-analyses incl. a Deformation-Softening Model (DSM) to calculate fracturing of concrete

Validation of the DSM by comparing predicted behaviour with results from laboratory tests on concrete steel fibres reinforced beams

Predicted crack widths are consistent with those measured!
2. Design

At a displacement of 8 mm the maximum calculated crack width is 0.44 mm

Mean value of measured crack width is 0.45 mm
2. Design

FEM Analyses

3D-FEM analyses of bearing capacity in ULS and design settlement in SLS

Design bearing capacity is 2.3 times design load effect

Largest calculated design displacement in SLS = 9.4 mm

Largest calculated design inclination difference in SLS = 0.07×10⁻³
2. Design

FEM Analyses

3D-FEM analyses of bearing capacity in ULS and design settlement in SLS

Design bearing capacity is 2.3 times design load effect

Largest calculated design displacement in SLS = 9.4 mm

Largest calculated design inclination difference in SLS = 0.07×10⁻³

In the diagram:

\[R_m = 5.4 \times S_k \]
\[R_k = 3.7 \times S_k \]
\[V_f = 23\% \]
\[\gamma_{Rg} = 2.36 \text{ (Global safety)} \]
\[R_d = R_m / \gamma_{Rg} = 2.3 \times S_k \]
3. Work and Control Plan

Work Performance Stages

- Spreading of sand
- Layer Elevation Adjustment
- Stabilisation and Watering
- Milling and Watering
- Levelling and Compaction incl. CCC
3. Work and Control Plan

Work Performance Stages

- Spreading of sand
- Layer Elevation Adjustment
- Stabilisation and Watering
- Milling and Watering
- Levelling and Compaction incl. CCC

Control

- Water Content Control
- Control of Stabilising Material
- Water Content Control
- Elevation Control
- Control of Air Voids < 5 %
- Control that Characteristic Compression Strength > 2.0 MPa

OK
4. Conclusions

Factors that made it feasible:

• Input parameters of the material model are directly linked to field tests where design parameters are validated in-situ during work performance – Presumption for the Observational Method

• Advanced non-linear analyses
4. Conclusions

Factors that made it feasible:

• Input parameters of the material model is directly linked to field tests where design parameters are validated in-situ during work performance – Presumption for the Observational Method

• Advanced non-linear analyses

• Observational Method with accurate planning including
 • Meticulous design, 2D and 3D FEM analyses
 • Field & Laboratory tests
 • Reviewing procedure
 • Pre-testing
 • Control at site before-during-after work operations
4. Conclusions

Factors that made it feasible:

• Input parameters of the material model is directly linked to field tests where design parameters are validated in-situ during work performance – Presumption for the Observational Method

• Advanced non-linear analyses

• Observational Method with accurate planning including
 • Meticulous design, 2D and 3D FEM analyses
 • Field & Laboratory tests
 • Reviewing procedure
 • Pre-testing
 • Control at site before-during-after work operations

And maybe most important:
• Inter-active Communication between:
 Client - Contractor - Engineers - Workmen
One obvious conclusion: Happy Engineers