USER DEVELOPMENTS IN ZSoil®
zSoil®.PC 200101 report

by
A. Truty. K. Podles

GeoDev Sarl
PO Box CH-1001 Lausanne
Switzerland

&

since 1985

https://zsoil.com

+STRUCTURES

ZSoil® PC 100101 report

Contents

1 Organization of compilation/linking/debugging environment 3
2 User supplied constitutive models for continuum 7
2.1 List of modifications with respect to ZSoil®version 2013. 7
2.2 Introduction 8
2.3 Creating script files for user model interface 8
2.4 Compiling, linking and debugging 11
2.4.1 Remarks on debuggingthecode 11
2.4.2 Settings for Microsoft Visual Studio 11
2.5 Programming user supplied constitutive model 13
25.1 Introduction 13
2.5.2 Adding user model call to the list of custom model calls 14
2.5.3 Programming new constitutive model L. 15
2.5.4 Flow dependency on temperature 15
255 Exported functions 16
2.5.5.1 Functions to communicate with system 16
2.55.2 Constitutive functions 17
2.55.3 Handling load time functions 20
2.55.4 Mathematical utilities 20

2.55.5 Functions to be used for addressing of subarrays in single
integer*4 work space 25
2.5.5.6 Functions for material data handling 26
2557 Otherutilities 28
26 Sampledata 30
3 User programmed output in ZSoil®postprocessor 31
3.1 Introduction 31
3.2 Creating necessary configuration files 31

CONTENTS

3.3 Programming user supplied C++ code to handle extra output 32
3.3.1 Example of programing user output for beam elements 33
3.3.2 Example of programing user output for shell/continuum elements . . 35

ZSoil® PC 100101 report 1

CONTENTS

2 ZSoil® PC 100101 report

Chapter 1

Organization of
compilation/linking /debugging
environment

During installation of ZSoil program its main components are placed in three directories as
shown in the following window

Window 1-1: Location of ZSoil®files after installation procedure

ZSoil® PC

ZSoil tree (Windows 7)
— C:/Users/All Users/ZSoil v2018/Full (configuration and temporary files)
CFG

— C:/ProgramData/ZSoil v2018/Full (configuration and temporary files)
CFG

L C:/Program Files/ZSoil /ZSoil v2018 v.18.00 x64 (binaries)

| Window 1-1 |

There are two possible user developments in ZS0il®2023 ie. implementation of user supplied
constitutive model for continuum, and user defined output foreseen for shell, continuum and
beam elements. To develop constitutive models within ZSoil®environment Intel Fortran com-
piler must be used while user defined output requires Microsft Visual C++ one. Both com-
pilers must be accessible from Microsoft Visual Studio 2012 or newer. Software development
kit (SDK) for user development is not installed automatically during ZSoil®installation. SDK
can be downloaded from https://www.zsoil.com /upgrades/v2018/. Local ZSoil®depository
(including source files, library files and projects) required for the aforementioned developments
can be located at any directory indicated by the user. It will be labeled as UserDevelopments.

CHAPTER 1. ORGANIZATION OF COMPILATION/LINKING/DEBUGGING
ENVIRONMENT

Window 1-2: Local ZSoil®depository form user developments

ZSoil®.PC

The UserDevelopments directory is organized as follows

UserDevelopments

— exe-x64 (here is local exe directory for 64 bit version)

CFG

H H (common headers *.h)

H zutl (headers *.h for zutl module to handle units system)

H zmate (headers *.h for zmate module to handle beam cross sections)
H lib-x64 (libraries *.lib)

— calc

prj

] user _models (here project for user supplied constitutive model is kept)

Src

src (headers *.inc files)

user _models (user sources *.for depository)

—

mod-x64 (precompiled 64 bit modules

[

z_post

i user output (user source *.cpp and project files)

| Window 1-2 |

The major part of the ZSoil calculation module has been written using Fortran 90/95/2003/2008
and C/C++ programming languages. Part of the development for user supplied constitutive
model must be written using Fortran language. Intel Visual Fortran, compatible with Mi-
crosoft Visual Studio 2017, must be used. The user defined output must be written in C++
language. Projects for the two user developments are prepared and ready to be used.

4 ZSoil® PC 100101 report

Window 1-3: Pluging user prepared dlls in ZS0il®2020

ZSoil® PC

Compiled dynamic linked libraries (usermodels.dll and/or useroutput.dil) must be pluged
in ZSoil®2020 through the following dialog box (from main ZSoil®menu click on System
configuration/User’s supplied modules).

*

User's supplied modules

CFG directon |E:"~F'n:ugramData"-25u:uiI w201ENFLLL
EXE directory |E:"~F'ru:ugram Filez"ZS oilhZS oil 2018 +18.00 x64

|Jzer's development folders
|Jzer supplied postprocesszing files

|Jzer programmed output [DLL) |D:'xU zerDevelopmentzhexe-sB4U serQutput. dil Browse

Uzer output setup (ML) |D:'xU serDeveloprmentshexe-xB44uzer_autput.xml Browse

il

Eutra user data [C5Y] |D:'xU zerDevelopmentzhexe-sB4AE C2design. cay

|Jzer supplied constitutive |D:'xU serDevelopmentstese-x54Y Browsze

Calculation module [DILL] | Browse

Preprocessor | Browsze

N
| Emm |
| Emm |
| Browse

Postprocesszor

Help (] Cancel |

Figure 1: Dialog box for plugging user developed modules

In case of user constitutive models we do declare the path to the resulting usermodels.dll
dynamic link library and a script file zsoil.usm while for user programmed output we do
indicate location of 3 files i.e. the resulting user output dll, the xml configuration file and
extra auxiliary user data file.

| Window 1-3 |

ZSoil® PC 100101 report 5

CHAPTER 1. ORGANIZATION OF COMPILATION/LINKING/DEBUGGING
ENVIRONMENT

6 ZSoil® PC 100101 report

Chapter 2

User supplied constitutive models
for continuum

2.1 List of modifications with respect to ZSoil®version 2013.

In order to be able to compute huge 3D models the implemented user models in previous
ZSoil®versions will not directly work within 2018 environment. The following changes must
be made in user supplied routines for constitutive models (see usrl.for routine as an example).

1. declaration of function — integer*4 :: IBUF _ElePtrGet is now obsolete

2. instead of aforementioned declaration the following statements must be added

IMSS$IF DEFINED (_ X64)
integer*8 :: IBUF EleHandleGet
IMSS$ELSE

integer*4 :: IBUF EleHandleGet
IMSSENDIF

integer*4 :: this_ BUF (¥*)
pointer (iptr,this BUF)

This modification allows to adress arrays with indices above 23!-1 that is the limit for four
byte integers (obviously under 64 bit systems).

3. before calling state update procedure (after keyword LGP _NEW _STATE) the following
modification must be made

c OBSOLETE since 2014 iptr = IBUF _ElePtrGet (icurrNr_ELE,M)

c OBSOLETE since 2014 T = ELG _ GetTempFromStorage (M(iptr), TisGiven)
iptr = IBUF _EleHandleGet (icurrNr ELE,M) ! DON'T EDIT

T = ELG_ GetTempFromStorage (this_ BUF,TisGiven) ! DON'T EDIT

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

2.2 Introduction

The ZS0il®2023 system allows the implementation of a user supplied constitutive model for
continuum elements. This option is available to every user who has a legal license for 2023
(professional or academic).

Implementation and using user supplied constitutive models consists of the three major de-
velopment steps:

1. creating a script file which defines model parameters (zsoil.usm file)

2. programming of a user supplied constitutive theory and then compiling it and linking to
produce usermodels.dll

3. making modifications within the system to instanciate user model

In the following sections we will describe how to implement a Huber-Mises elasto-plastic
model with plastic parameter dependent on temperature and an additional dependency of
flow parameters on temperature.

2.3 Creating script files for user model interface

We assume that for the time being user can redefine material properties only in the two
groups : "Elastic" and "Nonlinear" while the other ones can exclusively be extended (user
can add new parameters which are not handled by the original system but can be handled by
the user himself).

The script file zsoil.usm must be placed in the same folder as usermodels.dll (see 1).

In the following example this script file defines a Huber-Mises elasto-plastic model which
inherits the basic parameters setup from standard elastic model and thus it requires to add
group "Nonlinear" with 2 parameters: cohesion ¢ and evolution function number (load time
function) LT F¢(T'). This evolution function modifies the cohesion ¢ that may depend on the
current temperature value (hence heat project should be attached to activate it). In addition
fluid thermal dilatancy parameter is added to the "Flow" parameters group.

To avoid unexpected application errors when analyzing the script file the following rules must
be fulfilled during its preparation.

e all keywords begin with @ character in the first column
e <Group> can be one of:

» © MAIN (this group of parameters cannot be modified)

» © DENS (this group of parameters cannot be modified)

x @ ELAS (elastic parameters can be replaced)

» © GEOM (this group of parameters cannot be modified)
© FLOW (this group of parameters can be only extended)

*

» OCREEP (this group of parameters cannot be modified)

8 ZSoil® PC 100101 report

2.3. CREATING SCRIPT FILES FOR USER MODEL INTERFACE

» © NONL (nonlinear parameters can be replaced)

» © HEAT (this group of parameters can be only extended)
* @HUMID (this group of parameters can be only extended)
x @ INIS (this group of parameters cannot be modified)

» @ STAB (this group of parameters cannot be modified)

e <Group> string is always 6 characters long with additional spaces added between character
@ and the keyword

e <mode> can be one of

» REPLACE (means that standard parameters from template model will be replaced)

» ADD (means that a new set of parameters will be added to the standard ones)
e <string> is a string
e <par> is just a parameter string equivalent to <string>

e <count> is an integer value (usually nr of something)

The general structure of a script file for a single supplied material model is as follows:
OMODEL NAME

<string> (model name up to 10 characters)

(
<string> (name to be used in user interface dialog box)
<string> (here always use -> ELASTIC V as a template model name)
<Group><count><mode>
< par >
< par >

up to <count>

In the considered case we want to define a model which inherits its basic properties setup
from the standard elasticity model (obligatory for time being (1)), labeled as USER1, with the
2 "Nonlinear" parameters, single additional parameter for "Flow" properties and additional
single parameter for group "Heat".

In that case the script file must be defined as follows:
OMODEL NAME

USER1

User model number 1

ELASTIC V

© NONL 2 REPLACE

LTF nr for ¢(T) <(T) = c LTF (T(t))

ZSoil® PC 100101 report 9

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

© FLOW 1 ADD

LTF nr for k(T) k(T) = k LTF (T(t))

@ HEAT 1 ADD
Fluid thermal dilatancy

Remarks:

e units system is not available for user defined parameters

it is possible to define up to 60 user supplied models in the script file zsoil.usm

e it is worth to add few (empty) parameters to the supplied model because each modification

of number of parameters will result in loss of back compatibility

e the script file must be prepared with great care as any mistake may result in application

error

e the ZSoil menu analyzes the script file and generates the user interface dialog box auto-
matically (see Fig.(2.1))

e in the case of extension of the standard parameters groups like "Flow" or "Heat" an
additional button "User parameters" is added in standard dialog box (see Fig.(2.2))

Parameters

x|

Value name

Value

C

20

LTF nr for c(T)

1

Cancel

Figure 2.1: Dialog box for Nonlinear parameters

10

ZSoil® PC 100101 report

2.4. COMPILING, LINKING AND DEBUGGING

in

~ Material definition

Add | hodify | Delete

List of defined matetials

Name | Cont/Siruct type I Iaterial formulation | [+ Elastic Open
=+ 1: Mo name Cantinuurm usermadel number 1 [Open
in
Fluid bulk modulus Br |3.37e+038 [kNfm*2] |7 Flow
~Darcy's l_ Creep

Darcy's coefficient Kz |1 [mis]
[¥ MNon linear ﬂl
Darcy's coefficient Ky lW— [m/s]

B
Inclination angle <xx> B |0 [deg] Value name Value
: LTF nr for k(T)|

Residual saturation s, |0

Saturation constant o |2 [1/m]

Gravity term in Darcy's law
’7 [~ Skip gravity term
~Settings for undi driver
[¥ Undrained behavior

Penalty factor for fluid bulkc [41ggggop
modulus K*F / K

Suction pressure cut-off 100 [kN/m2]

*
[+ Advanced Hlp | ok | cancal |_

Data mode ISIEWE“j LI [+ Advanced

= Fo—

Figure 2.2: Dialog box for Flow parameters

2.4 Compiling, linking and debugging

Project file to compile and link usermodels.dll file, prepared with aid of the MS Visual Studio
2012, can be found in directory UserModels/calc/prj/user models.

In the CFG directory one may keep the int.dum file that contains information on current
debugged data (content of this file may look as follows:

"C:\Program Files\ZSoil\ZSoil 2018 v18.00 x64\Z Calc.exe" [#QSTARTDIR C:\ProgramData\ ZSoil
v2018\FULL@Q#] [#@PRJ D:\UserDevelopments\inp\mydata@#])

2.4.1 Remarks on debugging the code

It is a standard situation that content of common blocks which are used to communicate
with ZSoil is not visible. This is a major drawback of Visual Studio debugger. To remedy this
problem please make your own temporary arrays or variables and copy data from common
block to this auxiliary objects (these object will be well visible under debugger).

2.4.2 Settings for Microsoft Visual Studio

Default settings for Command and Working Directory must be changed when default ZSoil®folder
has been changed during installation (see 2.3).

Additionally, information on current debugged data can be copied from int.dum file and pasted
to Command Arguments (see 2.4).

ZSoil® PC 100101 report 11

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

12

userModels Property Pages

Configuration: IActive(Release) -

Platform: | Active(x64) 'I I Configuration Manager...]

4 Configuration Propertie!
General
| Debugging|
Fortran
Linker
Resources
MIDL
Manifest Tool
Build Events
Custom Build Step

Command
Command Arguments

c\Program Files\ZSoil\Z5oil 2018 v18.00 x64\Z Calc.exe

c\Program Files\ZSoil\Z50il 2018 v18.00 x64\
Attach No
Environment

Merge Environment Yes

Debugger Type Native Only

Connection
Remote Server Name

Remote Command

Working Directory
The application's working directory. By default, the directory containing the project file.

J [zestosu

oK || Anuly

Figure 2.3: Default Command and Working Directory

userModels Property Pages

Configuration:

Active(Release)

-] Platform: [Active(xﬁfl)

4 Configuration Propertie;
General
Debugging
Fartran
Linker
Resources
MIDL
Manifest Tool
Build Events
Custom Build Step

:\Program Files\ZSoil\ZSoil 2018 v18.00 x64\Z_Calc.c

Command Arguments [#@5TARTDIR C:\ProgramData\ZSoil v2018\FULLG ~
Working Directory c:\Program Files\Z5o0il\ZSoil 2018 v18.00 x64\
Attach
Environment

Merge Environment

Debugger Type Native Only

Connection
Remote Server Mame
Remote Command

Command Arguments
The command line arguments to pass to the application.

Figure 2.4: Command Arguments settings

ZSoil® PC 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

2.5 Programming user supplied constitutive model

2.5.1 Introduction

The main goal of each constitutive model is to find a new stress state for a given strain
increment at a given time instance N + 1 once the stress and other state variables are known
for the time instance N. Usually the constitutive level is limited to a single integration point
(so-called Gauss point in the case of standard finite elements) and thus the interface between
integration point (local level) and the parent finite element is an important part of the code to
be developed by the programmer. This part of the code has been prepared by ZSoil developers
and presented in the template file usrl.for containing the full code for Huber-Mises model
with cohesion value being dependent on temperature. The standard actions to be handled
during computation at the integration point level are as follows:

e update of the state variables (like stresses for instance) (via case(L GP_UPD_STATE))
and telling the system whether plasticity has occured (this information is returned through
iplas_ TRA variable kept in the common block defined in trans.inc file)

e computation of a new stress state for given effective strain increment(after subtraction
of the initial and creep strain increments) (via case(L_GP_NEW _STATE)); note that
for models with constant elastic parameters the elastic stiffnes matrix is given through
Dev_ TRA matrix (transferred via common block defined in trans.inc file); in case of
nonlinear elastic models the content of that matrix must be set exactly at that place; the
computed new stress state must be sent to the finite element level through array Sact_ TRA
(kept in common block defined in trans.inc file)

e initialization of all the state variables kept in the internal Gauss point storage

e setting the size of the internal gauss point storage size (expressed in integer*4 words); the
storage size must be returned through InfoOut array

e setting symmetry status for tangent stiffness matrix; the information whether the tangent
stiffness matrix is symmetric (1) or not (0) is returned through InfoOut array

e setting the current elastic stiffness matrix D; the current stiffness matrix must be returned
through InfoOut array

e setting the current elastic compliance matrix C; the current compliance matrix must be
returned through InfoOut array

e printing the material properties for groups specific for given model
e returning the information on

» current stress state (return through Sact _ TRA array defined in common block in trans.inc
file)
» Poisson ratio (return through v TRA variable defined in common block in trans.inc file)

» current stress level (return through Slev_ TRA variable defined in common block in
trans.inc file)

» current plasticity index (return through Iplas_ TRA variable defined in common block in
trans.inc file)

ZSoil® PC 100101 report 13

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

» current Young modulus (return through E_TRA variable defined in common block in
trans.inc file)

e modification of strength parameters during stability analysis

2.5.2 Adding user model call to the list of custom model calls

To activate models defined in the script file user must call them within the body of the
subroutine SUM _Models which is listed below (see SuppliedModels.for file).

IMS$ IF DEFINED (. BUILD DLL ZCALC)
IMS$ ATTRIBUTES DLLEXPORT :: SUM_Models
IMS$ END IF
include "..\ \nodecl.inc’
include "..\ \models.inc’
include "..\\ prop.inc’
IMSS$ IF DEFINED (__BUILD DLL_ZCALC)
IMS$ ATTRIBUTES DLLIMPORT :: /PRO_models _common/
IMS$ END IF
IMS$ IF DEFINED (. _BUILD DLL ZCALC)
IMS$ ATTRIBUTES DLLIMPORT :: /PRO_groups common/
IMS$ END IF
IMS$ IF DEFINED (. BUILD DLL ZCALC)
IMS$ ATTRIBUTES DLLIMPORT :: /PRO_common/

IMS$ END IF

integer*4 :: iorder I action to be activated for this gauss point
integer*4 :: model I model index

real*8 :: props (*) I array with properties

integer*4 :: IGPBuff (*) ! gauss point internal storage

integer*4 :: Infoln (*) I input buffer
integer®*4 :: InfoOut (*) ! output buffer
integer*4 :: M (*) I whole data space

character*10 xxx
xxx = PRO_ TypeCharldArray(model)
select case (PRO _ TypeCharldArray(model))

14 ZSoil® PC 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

case (" USER1")
call USR1_Model (iorder,Props,|IGPbuff,Infoln,InfoOut,M)
case default
stop 'USER _Models unknown’
end select
end subroutine SUM _Models

To activate a new model a new "case" statement must be added to the selection list. Any
statement like !M S is a compiler directive.

2.5.3 Programming new constitutive model

To program a new constitutive model user should start from the delivered template file usrl.for
which contains an example of a Huber-Mises elasto-plastic model with strength parameter
being dependent on temperature. Any line with comment DON'T EDIT should be left as
it is. The detailed description of what the code should return to the element level and
through which data channels, has been described in the previous sections. Hence the easiest
way to program a new model is to copy usrl.for file onto new one, add it to the project
(usermodels.dll).

2.5.4 Flow dependency on temperature

In this version the permeability coefficients are dependent on temperature and the source
term related to fluid thermal dilatancy is added. This is included in the kOfT .for module. In
the delivered code we assume that k = ko * f(T(t)) where ko is the one introduced as stan-
dard permeability parameter in Flow parameters group. Another possibility where f(T(t)) is
governed by some constitutive function is allowed, but user must introduce necessary param-
eters via script file and to prepare a code within body of FSS MakePearmTempDependent
subroutine (see kofT.for module).

ZSoil® PC 100101 report 15

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

2.5.5 Exported functions

2.5.5.1 Functions to communicate with system

e to use this function always include '..\\anal enu.inc’
e idata is of type : integer*4

e idata can be one of the following

IANA _ITER_NR : for this enumerator the function returns actual iteration number

(at the global level)

e to use this function always include "..\\anal enu.inc’
e idata is of type : integer*4

e idata can be one of the following

IANA_SAFETY _ACT : function will return actual global safety factor during stability anal-
ysis

IANA SAFETY BEG : function will return initial global safety factor during stability analysis
IANA_ SAFETY END : function will return final global safety factor during stability analysis
IANA GRAV _ACT : function will return actual gravity multiplier for the initial state analysis
IANA GRAV_END : function will return final gravity multiplier for the initial state analysis

IANA _GRAV _INC : function will return increment of gravity multiplier for the initial state
analysis

IANA_DTIME _ACT : function will return actual time increment for time dependent drivers
IANA_DTIME _BEG : function will return initial time increment for time dependent drivers
IANA_TIME _FINAL : function will return final time value for time dependent drivers
IANA_DT_MULT : function will return time increment multiplier

IANA_TIME _ACT : function will return actual time

IANA_TIME _BEG : function will return initial time for time dependent drivers

16 ZSoil® PC 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

2.5.5.2 Constitutive functions

real*8 :: E ! young modulus (IN)
real*8 :: v | Poisson ratio (IN)
integer®4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)

real*8 :: De(nstre,nstre) ! elastic stiffness matrix (OUT)

real*8 :: E ! young modulus (IN)
real*8 :: v | Poisson ratio (IN)
integer®4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)

real*8 :: De(nstre,nstre) ! elastic compliance matrix (OUT)

integer®*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)

I returns first stress invariant 11

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)
I returns p (p=-11/3)

integer®4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)
real*8 :: s (nstre) (OUT)

I returns J2 invariant and stress deviator s(nstre)

ZSoil® PC 100101 report

17

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

integer®4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)

I returns q invariant (q=sqrt(3*J2))

integer®4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: strain (nstre) (IN) ! with gamma'’s for shear components

I returns sqrt(2/3 eij*eij) where eij is strain deviator

integer®*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)

I returns 3-rd stress invariant

integer®4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: dl1dSig (nstre) (OUT)
I returns dI1/dSig derivative

integer®4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: S(nstre) ! (IN) stress deviator

real*8 :: dJ2dSig (nstre) (OUT)

I returns dJ2/dSig derivative

18 ZSoil® PC 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: S(nstre) ! (IN) stress deviator

real*8 :: xJ2 ! (IN) J2 stress invariant

real*8 :: dJ3_dSig (nstre) (OUT)

I returns dJ3/dSig derivative

integer®4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: xM(nstre,nstre) | (OUT)

! 2 2

I returns d J2 / dSig derivative

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: sDev (nstre) ! (OUT) stress deviator

real*8 :: xI1 ! (OUT) first stress invariant |1

real*8 :: xJ2 ! (OUT) second stress invariant J2

real*8 :: xJ3 ! (OUT) thrid stress invariant J3

c converts 11,J2,J3 invariants to Haigh-Westergaard invariants xsi,ro, theta

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: xI1 ! (IN) first stress invariant |1

real*8 :: xJ2 ! (IN) second stress invariant J2

real*8 :: xJ3 ! (IN) thrid stress invariant J3

real*8 :: xsi ! (OUT)

real*8 :: ro | (OUT)

real*8 :: theta ! (OUT)

ZSoil® PC 100101 report 19

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

integer®*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: De (nstre,nstre) ! (IN) elastic constitutive matrix

real*8 :: a (nstre) ! (IN) dF/dSig gradient

real*8 :: b (nstre) ! (IN) dQ/dSig gradient

real*8 :: H ! (IN) hardening modulus

real*8 :: Dep (nstre,nstre) ! (OUT) elastic constitutive matrix

2.5.5.3 Handling load time functions

integer*4 :: iltf ! (IN) load time function index
real*8 :: Time ! (IN) time value
integer*4 :: M(*) ! (IN) data space

I returns value of this ooad time function for given time

2.5.5.4 Mathematical utilities

integer®*4 :: n! (IN) matrix size (up to 3)
real*8 :: a(n,n) [(IN) real matrix
real*8 :: a_inv(n,n) I(OUT) output inverse matrix

real*8 :: detMIN ! (IN) minimum determinat value under which inversion is not done

integer®4 :: n ! (IN) matrix size (up to 3)
real*8 :: a(n,n) I(IN) real matrix
real*8 :: a_inv(n,n) 1(OUT) output inverse matrix

I returns determinant value

logical*4 function MAT _Solvel23 (a,n,rhs,sol)

20 ZSoil® PC 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

integer®4 :: n | (IN) matrix size (up to 3)
real*8 :: a(n,n) I(IN) real matrix

real*8 :: rhs(n) !(IN) rhs vector

real*8 :: sol(n) !(OUT) solution of a * sol = rhs

I returns TRUE if everything ok and FALSE if matrix is singular

integer®*4 :: n I (IN) vector size
real*8 :: a(n) I(IN) real vector

I ais normalized

integer*4 :: nm,| ! (IN)
real*8 :: a(m,n),b(n,1) !(IN) real matrices
real*8 :: ¢(m,l) 1(OUT) real matrix

I procedure evaluates ¢ [m,l] = a [m,n] * b [n,]]
C:::::::::::::::::::::::::::::::::
subroutine MAT _aTxb (a,m,n,b,l,c)
C:::::::::::::::::::::::::::::::::

integer*4 :: nm,| ! (IN)
real*8 :: a(n,m),b(n,1) !I(IN) real matrices
real*8 :: ¢(m,l) 1(OUT) real matrix

! T

I procedure evaluates ¢ [m,l] = a [n,m] * b [n,]]
(m=—=————————————— e e
subroutine MAT _axbT (a,m,n,b,l,c)
(m=——————————————— e

integer*4 :: nm,| ! (IN)
real*8 :: a(m,n),b(l,n) !(IN) real matrices
real*8 :: ¢(m,l) 1(OUT) real matrix T

I procedure computes ¢ [m,I] = a [m,n] * b [I,n]

ZSoil® PC 100101 report 21

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

integer®*4 :: n ! (IN)
real*8 :: a(n),b(n) !(IN) real vectors
real*8 :: ¢(n) !(OUT) real vector

I procedure computesc =a + b

integer®*4 :: n ! (IN)
real*8 :: a(n),b(n) !(IN) real vectors
real*8 :: c(n) !(OUT) real vector

I procedure computes c = a-b

integer*4 :: n! (IN) matrix size
real*8 :; a(n,n) ! (IN/OUT) matrix
I symmmetrization of the square matrix with assumption that the upper

I triangle is defined

integer®4 :: n! (IN) matrix size
real*8 :; a(n,n) ! (IN/OUT) matrix
I symmmetrization of the square matrix with assumption that the lower

I triangle is defined

integer*4 :: n! (IN) vector size

n
real*8 :: a(n) ! (IN) vector

22 ZSoil® PC 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

real*8 :: b(n) ! (OUT) vector
real*8 :: factor
' b = a * factor

I it is possible to call this routine like : call MAT _axfactor (a,3,1.5d0,a)

integer*4 :: n ! (IN) matrix size
real*8 :: a(n) ! (IN) vector
real*8 :: b(n) ! (IN) vector

I returns scalar product a * b

integer*4 :: n | (IN) matrix size
real*8 :: a(m,n) ! (IN) matrix

real*8 :: at(n,m) ! (OUT) transposed matrix

integer*4 :: n ! (IN) matrix size
integer*4 :: ia(m,n) ! (IN) matrix
integer*4 :: iat(n,m) ! (OUT) transposed matrix

integer®*4 = N1 (N <=16!lll)
real*8 :: A(N,N) ! (IN/JOUT) matrix given/inverted
logical*4 :: InvErr ! (OUT) inversion error flag (TRUE means failure)

integer*4 :: Max,N
real*8 :: A(Max,Max), B(N)

ZSoil® PC 100101 report 23

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

I solves A * x =B
I' B is replaced by solution x
I'in case of success returns 0

I else returns 1

integer®4 - n'! (IN) nis up to 3 !l
real*8 :: a(n,n) ! (IN)
real*8 :: det ! (OUT) returned determinant

integer®*4 :: N ! (IN) vector size
real*8 :: X(N) ! (IN/OUT) vector
real*8 :: Y(N) ! (IN) vector
real*8 :: factor

I evaluates X = X + factor * Y

integer*4 :: N ! (IN) vector size
real*8 :: X(N) ! (IN/OUT) vector
real*8 :: Y(N) ! (IN) vector
real*8 :: factor

I evaluates X = -X + factor * Y

real*8 :: a(3),b(3) ! (IN) vectors
real*8 :: ¢(3) ! (OUT) vector product c =ax b

ZSoil® PC 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

real*8 :: A(n,n)
real*8 :: value

| sets a diagonal matrix with diagonal elements of value ->value

real*8 :: A(n) ! (IN/OUT) vector

I changes sign of all elements of vector A

integer*4 :; Max,N ! (IN)

real*8 :: A(max,MaX) ! (IN) matrix

real*8 :: Rhs (N) ! (IN/OUT) vector

I solves A x b = Rhs using Crout decomposition
I solution is returned in array Rhs

I if matrix is nonsingular function returns 0

I else returns 1

integer*4 :: nRowA,nColA,nColB,nColC ! (IN)
real*8 :: A(nRowA,nColA) ! (IN) matrix
real*8 :: B(nRowA,nColB) ! (IN) matrix
real*8 :: C(nColB,nColC) ! (IN) matrix
real*8 :: AtBC(nColA,nColC) ! (OUT) matrix
real*8 :: buff (nRowA) ! (IN) work array

LT

I evaluates A B C

2.5.5.5 Functions to be used for addressing of subarrays in single

integer*4 work space

subroutine MEM _ StartPos (ipos)

ZSoil® PC 100101 report

25

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

integer*4 :: size ! (IN) subarray size

integer*4 :: iprec | (IN) int*4 words per single subarray item (1 for int*4 arrays and 2 for
real*8 arrays)

2.5.5.6 Functions for material data handling

integer*4 :: igroup ! (IN) group enumerator from include file 'prop.inc’
integer®4 :: item p ! (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I returns requested parameter

| igroup can be one of the following:
IPRO_GR_MAIN =1,

IPRO_GR_DENS = 2, ! density group
IPRO_GR_ELAS = 3, ! elastic parameters
IPRO_GR_GEOM = 4, | geometry
IPRO_GR_FLOW =5, ! flow
IPRO_GR_CREEP = 6, ! creep
IPRO_GR_NONL = 7, ! nonlinear parameters
IPRO_GR_HEAT =8, ! heat
IPRO_GR_HUMI = 9, | humidity

IPRO_GR __INIS =10, ! initial state Ko
IPRO_GR_STAB =11, ! local stability

I item is just an index, for certain parameter groups these indices are enumerated and
I kept in prop.inc include file

like for flow parameters: (see prop.inc file)
parameter(

IPRO_FLOW KX =1,

IPRO_FLOW _KY =2,

26 ZSoil® PC 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

IPRO_FLOW KZ = 3,
IPRO_FLOW THETA = 4,
IPRO_FLOW ANISO X =5,
IPRO_FLOW_ANISO Y = 6,
IPRO_FLOW ANISO Z =7,
IPRO_FLOW BULK_ MOD = 8,
IPRO_FLOW_Sr=9,
IPRO_FLOW_ALPHA =10,
IPRO_FLOW_SKIP_GRAV =11,
IPRO_FLOW_UNDR_FLAG =12,
IPRO_FLOW_UNDR_EPS =13,
IPRO_FLOW UNDR_PLIM =14

integer*4 :: igroup ! (IN) group enumerator from include file "prop.inc’

integer*4 :: item p ! (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I returns requested parameter from additional material model storage

integer*4 :: igroup ! (IN) group enumerator from include file "prop.inc’

integer*4 :: item p ! (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I sets certain parameter value ->Value

integer*4 :: igroup ! (IN) group enumerator from include file "prop.inc’

integer*4 :: item p ! (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I sets certain parameter value ->Value in additional storage

ZSoil® PC 100101 report

27

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

real *8 function PRO _ GetParamNonl(props,item)

integer®*4 :: item p ! (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I returns parameter from group NONLINEAR for given item

integer*4 :: item p ! (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I sets parameter from group NONLINEAR and for given item ->value

integer®*4 :: item ! (IN) parameter index

real*8 :: Coeff I (IN) given multiplier

real*8 :: props (*) ! (IN) parameters array

I modifies angle parameter (expressed in deg (!!!)) from group NONLINEAR
I parameter is kept in group NONLINEAR in -item- position

integer®4 :: item ! (IN) parameter index

real*8 :: Coeff I (IN) given multiplier

real*8 :: props (*) ! (IN) parameters array

I modifies any parameter from group NONLINEAR (multiplies by Coeff)
I parameter is kept in group NONLINEAR in -item- position

2.5.5.7 Other utilities

integer®*4 :: n ! (IN) vector size

integer®4 :: iarray (n) ! (IN/OUT) vector

28 ZSoil® PC 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

I clears an int*4 array

integer*4 :: n ! (IN) vector size
real*8 :: array (n) ! (IN/OUT) vector

I clears a real*8 array

IN) vector size

I (OUT) vector
I (IN) vector

integer*4 :: n !

integer*4 :: ia(n

—
=]

integer*4 :: ib

I copies ib ->i

o

integer®*4 :: n ! (IN) vector size
integer®*4 :: a(n) ! (OUT) vector
integer*4 :: b(n) ! (IN) vector

I copiesb->a()(a=b)

integer*4 :: nsd ! (IN) space size (2 or 3)

real*8 :: s(n) ! (IN) stress vector ordered (xx,yy,xy,zz,xz,yz)
real*8 :: p(nsd) (OUT) ! principal values

l copiesb->a()(a=b)

ZSoil® PC 100101 report

29

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

2.6 Sample data
In directory INP you have 3 examples in which user defined model is used:

e cutT.inp (heat transfer problem)

e cutLMS1l.inp (transient flow problem based on temperature field generated in project
cutT.inp)

e cutLMS2.inp (slope stability problem based on temperature field generated in project
cutT.inp)

30 ZSoil® PC 100101 report

Chapter 3

User programmed output in
ZSoi|®postprocessor

3.1 Introduction

The ZSoil®2023 system allows the user to program his own output (in C++) and to plug
it into the postprocessor. This option is available to every user who has a legal license of
ZS0il®2023 (professional or academic).

The introduction of user programmed output consists of the two major steps:

1. creating necessary configuration files

2. programming of a user supplied C++ classes and then compiling them, and linking, to
produce useroutput.dll file

3.2 Creating necessary configuration files

The first configuration file (prepared in xml format) must be labeled as user output.xml.
Structure of this file is as follows

<?xml version="1.0" encoding="1S0-8859-15"7>
<USER_OUTPUT>

<ELEMENT _ CLASS label="SHELL">
<RESULT label="(User):As1-XX"></RESULT >
<RESULT label="(User):Asl-YY"></RESULT>
<RESULT label="(User):As2-XX"></RESULT >
<RESULT label="(User):As2-YY"></RESULT >
</ELEMENT _CLASS>

<ELEMENT _CLASS label="CONTINUUM" >
<RESULT label="(User):S*p"></RESULT >
</ELEMENT _CLASS>

<ELEMENT _ CLASS label="BEAM">
<RESULT label="(User):As1"></RESULT >
<RESULT label="(User):Asl-min"></RESULT >
<RESULT label="(User):As2-min"></RESULT >

CHAPTER 3. USER PROGRAMMED OUTPUT IN ZSOIL®POSTPROCESSOR

</ELEMENT _CLASS>
</USER_OUTPUT>

As we can see the first line is just the header of the xml file. The word <USER_OUTPUT > is
the main keyword that opens the definition of the extra output, while </USER_OUTPUT>
closes it. Between these two keywords we can identify three output definitions for three classes
of elements (only these classes are supported for the time being) ie. shells, continuum and
beams. As an example a simple code is delivered that computes longitudinal reinforcement
(based on Wood-Armer bending moments) in shells (without taking into account membrane
efforts) and beams (without axial force either). For continuum as an example simple class
that computes S p nominal pore water pressure is delivered. In this xml file result labels
can only be edited. Moreover it is important to remember in which order these results are
declared, as later on, in the C++ code, we will be refering to them through enumerators 0,
1...etc... Maximum 20 extra results for each element class can be handled by ZSoil®.

The second file that can be created by the user may include extra data like concrete properties
taken from the EC2 standard, steel properties etc... Content of the file (EC2design.csv) used
in the delivered code is as follows (this is *.csv format that can easily be edited with aid of
excel)

Concrete class C20/25;;
Ecm;30000;MPa
fck;20;MPa
fctm:2.2:MPa
fctk;1.5:MPa

epsilon ¢3;0.00175;
epsilon _cu3;0.0035;
gamma_¢;1.4;

eta;1;

lambda;0.8;
rho__min;0.0013;

Steel RB500;;
fyk;500;MPa

gamma_ s;1.15;
Reinforcement position:;
al;0.035;m

a2;0.035;m

3.3 Programming user supplied C++ code to handle extra out-
put

The following C++ functions are delivered to start further developments

1. ExtraDataUserManipulation.cpp, ExtraDataUserManipulation.h
This function allows the user to read the EC2design.csv configuration file and to serve this
data if needed

2. GPRsIBeamUser.cpp, GPRsIBeamUser.h

32 ZSoil® PC 100101 report

3.3. PROGRAMMING USER SUPPLIED C++ CODE TO HANDLE EXTRA OUTPUT

This function allows the user to produce output for beam elements

3. GPRslContinuumUSER.cpp, GPRslContinuumUser.h This function allows the user to pro-
duce output for continuum elements

4. GPRsIShellUSER.cpp, GPRslIShellUser.h This function allows the user to produce output
for shell elements

5. QuadReinforcement.cpp, QuadReinforcement.h
This class is used to dimension reinforced concrete quadrilateral cross section

3.3.1 Example of programing user output for beam elements

In order to achieve full functionality of the user programmed output 3 basic functions in
GPRsIBeamUser.cpp must be defined i.e.

1. function give(...) that returns the result in form of double real value

2. function filter (..) that checks sign (or other verificaton) of the produced result (for instance
reinforcement area must be positive)

3. function get unit (..) that returns unit label for produced result (see header #include
" \..\zutl\zunits.h" for predefined unit labels)

Let us now analyze body of functions in GPRs|IBeamUser.cpp that produce extra results for
beam elements.

#include "stdafx.h"

#include "QuadReinforcement.h"
#include " ../ GPRsIBeamUser.h"
#include " ../ UserExtraData.h"
#include " ../../zmate\CrossSection .h"
#include " ../../ zutl/zunits .h"

//
double GPRsIBeamUser_give (int user_item, //USER_1=0,USER 2.....
CString & item string,
int user material _number,
UserExtraData* usr data,
double «F, //NX,QY,QZ —> note that it can be NULL !
double *M, //MX,MY,MZ —> note that it can be NULL !
std :: vector <GPRs|BeamLayersUser> & layers core info
std :: vector <GPRslBeamLayersUser> & layers_reinf_info,
int xret ,
CrossSection *sect) //return 1 if ok
//
{
double h = 0.0;
double b = 0.0;
switch (sect—>type())
{
case CrossSection ::CROSS SECTION RECT :
{

CrossSection RECT x*sectRect = (CrossSection RECTx*)sect;
b = sectRect—>b;
h = sectRect—>h;
switch (user_item)

case 0://reinforcement XX—bottom

ZSoil® PC 100101 report 33

CHAPTER 3. USER PROGRAMMED OUTPUT IN ZSOIL®POSTPROCESSOR

{

double MEd

xret = 1;

if (MEd <
return 0.

else

0.
0;

M [2];

0)

return QuadReinforcement::Quadl (usr data,b,h ,MEd, QuadReinforcement ::BOTTOM);

}
break ;

case 1://

xret = 1;
return 0.0;

case 2://

xret = 1;
return 0.0;

default:

xret = 0;
return 0.0;
break ;

it to the nodes (via superconvergent patch rec

}
break ;
case CrossSection ::CROSS_SECTION_UNDEFINED :
case CrossSection ::CROSS_SECTION_RECT_TUBE :
case CrossSection ::CROSS SECTION CIRCLE
case CrossSection ::CROSS_SECTION_CIRC_TUBE :
case CrossSection ::CROSS SECTION RECT BOX :
case CrossSection ::CROSS_SECTION_|_SHAPE_S :
case CrossSection ::CROSS SECTION | SHAPE NS
case CrossSection ::CROSS_SECTION_T_SHAPE :
case CrossSection ::CROSS_SECTION_RECT_AXI
default
xret = 0;
return 0.0;
break ;
b
}
double GPRsIBeamUser filter (int user item , //USER 1=0,USER 2.....
CString & item string ,
double rsl)
/7
// this function filters user result after extrapolating
{
switch (user item)
{
case 0:
case 1:
case 2:
case 3:
return max(rsl ,0.0); //reinforcement must be positive
default:
return rsl;
3
}
//
int GPRs|IBeamUser get unit (int user item,6 CString & item string ,UNIT managerx umngr)
//
{
switch(user item)
case 0://reinforcement XX—bottom
return UNIT AREA;
}
break ;
case 1://reinforcement YY—bottom
return UNIT AREA;
34 ZSoil® PC 100101 report

3.3. PROGRAMMING USER SUPPLIED C++ CODE TO HANDLE EXTRA OUTPUT

1
break ;

case 2://reinforcement XX—top

return UNIT AREA;

}
break ;

case 3://reinforcement YY-top

return UNIT AREA;

}
break ;

default:
return UNIT DIMLESS;
break ;

¥
}

As we can see user receives complete information for beam integration point that includes
internal forces, but also (for layered beams) stresses, strains and other information for core
material and all reinforcement layers (at a given integration point).

3.3.2 Example of programing user output for shell/continuum
elements

Same scheme, as the one described for beams, is used for shell and for continuum elements.

ZSoil® PC 100101 report 35

	Organization of compilation/linking/debugging environment
	User supplied constitutive models for continuum
	List of modifications with respect to ZSoil"472version 2013.
	Introduction
	Creating script files for user model interface
	Compiling, linking and debugging
	Remarks on debugging the code
	Settings for Microsoft Visual Studio

	Programming user supplied constitutive model
	Introduction
	Adding user model call to the list of custom model calls
	Programming new constitutive model
	Flow dependency on temperature
	Exported functions
	Functions to communicate with system
	Constitutive functions
	Handling load time functions
	Mathematical utilities
	Functions to be used for addressing of subarrays in single integer*4 work space
	Functions for material data handling
	Other utilities

	Sample data

	User programmed output in ZSoil"472postprocessor
	Introduction
	Creating necessary configuration files
	Programming user supplied C++ code to handle extra output
	Example of programing user output for beam elements
	Example of programing user output for shell/continuum elements

