~7 4 .
%‘ ZSOII for geotechnics & structures

USER DEVELOPMENTS IN ZSOIL

Report 100101

A. Truty
K. Podles

GeoDev.

PO Box CH-1001 Lausanne
Switzerland
https://zsoil.com

ZSoil® 100101 report

Contents

1 Organization of compilation/linking/debugging environment 5
2 User supplied constitutive models for continuum 9
2.1 List of modifications with respect to ZSoil®version 2025.
2.2 Introduction 9
2.3 Creating script files for user model interface 10
2.4 Compiling, linking and debugging 12
2.4.1 Remarks on debugging thecode 12
2.4.2 Settings for Microsoft Visual Studio 13
2.5 Programming user supplied constitutive model 13
2.5.1 Introduction 13
2.5.2 Adding user model call to the list of custom model calls 15
2.5.3 Programming new constitutive model 16
2.5.4 Flow dependency on temperature 17
2.5.5 Exported functionso 18
2.5.5.1 Functions to communicate with system 18
2.5.5.2 Constitutive functions 19
2.5.5.3 Handling load time functions 22
2.5.5.4 Mathematical utilities 22
2.5.5.5 Functions to be used for addressing of subarrays in single
integer*4 work space 27
2.5.5.6 Functions for material data handling 28
2.55.7 Other utilities 31
2.6 Sampledata 33
3 User programmed output in ZSoil®postprocessor 35
3.1 Introduction L 35
3.2 Creating necessary configuration files 35

CONTENTS

3.3 Programming user supplied C++ code to handle extra output 36
3.3.1 Example of programing user output for beam elements 37
3.3.2 Example of programing user output for shell /continuum elements . . 39

4 ZSoil® 100101 report

Chapter 1

Organization of
compilation/linking /debugging
environment

During installation of ZSoil program its main components are placed in three directories as
shown in the following window

Window 1-1: Location of ZSoil®files after installation procedure

ZSoil®

ZSoil tree (Windows 11)
— C:/Users/All Users/ZSoil v2026/Full (configuration and temporary files)
CFG

— C:/ProgramData/ZSoil v2026 /Full (configuration and temporary files)
CFG

L C:/Program Files/ZSoil /ZSoil v2026 v.26.00 x64 (binaries)

| Window 1-1 |

There are two possible user developments in ZSoil®2026 ie. implementation of user supplied
constitutive model for continuum, and user defined output foreseen for shell, continuum and
beam elements. To develop constitutive models within ZSoil®environment Intel Fortran com-
piler must be used while user defined output requires Microsft Visual C+-+ one. Both com-
pilers must be accessible from Microsoft Visual Studio 2022 or newer. Software development
kit (SDK) for user development is not installed automatically during ZSoil®installation. SDK
can be downloaded from https://www.zsoil.com /upgrades/v2026/. Local ZSoil®depository
(including source files, library files and projects) required for the aforementioned developments
can be located at any directory indicated by the user. It will be labeled as UserDevelopments.

CHAPTER 1. ORGANIZATION OF COMPILATION/LINKING/DEBUGGING
ENVIRONMENT

Window 1-2: Local ZSoil®depository form user developments

ZSoil®

The UserDevelopments directory is organized as follows

UserDevelopments

— exe-x64 (here is local exe directory for 64 bit version)

CFG

- H (common headers *.h)

H zutl (headers *.h for zutl module to handle units system)

H zmate (headers *.h for zmate module to handle beam cross sections)

H lib-x64 (libraries *.lib)

prj

user_models (here project for user supplied constitutive model is kept)

src (headers *.inc files)

user_models (user sources *.for depository)

—

mod-x64 (precompiled 64 bit modules

«I z_post

4 user_output (user source *.cpp and project files)

| Window 1-2 |

The major part of the ZSoil calculation module has been written using Fortran 90/95/2003/2008 /2018
and C/C++ programming languages. Part of the development for user supplied constitutive

model must be written using Fortran language. Intel Visual Fortran, compatible with Mi-

crosoft Visual Studio 2022, must be used. The user defined output must be written in C++
language. Projects for the two user developments are prepared and ready to be used.

6 ZSoil® 100101 report

Window 1-3: Pluging user prepared dlls in ZS0il®2026

ZSoil®

Compiled dynamic linked libraries (usermodels.dll and/or useroutput.dil) must be pluged
in ZSoil®2026 through the following dialog box (from main ZSoil®menu click on System
configuration/User’s supplied modules).

User's supplied modules X
CFG directory |C:\ProgramData\ZSDiI we02EFLILL
EXE directony |C:\Pr0gram Filesh\ZSoihZSoil 2026 w26.00

User's development folders
Uszer supplied postprocessing files

User programmed output (DLL) |E:\,USerMDdeIs\exe—xﬁdl"\UserOutput.dll Browse

User output setup (<ML) |E:\UserModeIs\exe—xﬁ4\user_output.xm| Browse

Extra user data (C5Y) |E:\UserModeIs\exe—x64\ECEdesign.csv Browse

!

User supplied constitutive models |E:\Userr\-’10de|s\exe-x84"\

Calculation madule (DLL) | Browse

Preprocessor | Browse

| Zom |
N
CEE

Fostprocessar | Browse

Help ‘ 0K, Cancel ‘

Figure 1: Dialog box for plugging user developed modules

In case of user constitutive models we do declare the path to the resulting usermodels.dll
dynamic link library and a script file zsoil.usm while for user programmed output we do
indicate location of 3 files i.e. the resulting user output dll, the xml configuration file and
extra auxiliary user data file.

| Window 1-3 |

ZSoil® 100101 report 7

CHAPTER 1. ORGANIZATION OF COMPILATION/LINKING/DEBUGGING
ENVIRONMENT

8 ZSoil® 100101 report

Chapter 2

User supplied constitutive models for
continuum

2.1 List of modifications with respect to ZSoil®version 2025.

As ZSoil 2026 is run fully in parallel mode it is forbidden to use within the user supplied
routines any kind of static data that could cause sudden crash. An interactive debugging
can be done only for single thread. Communication between the model and finite element is
realized through three common blocks labeled as CentralPoint_ TRA , Currentintpoint_TRA
and pointers_TRA (see include file trans.inc). In the template user supplied routine (usrl.for)
one can find all comments explaining what is given and what should be returned to the
element.

2.2 Introduction

The ZS0il®2026 system allows the implementation of a user supplied constitutive model for
continuum elements. This option is available to every user who has a legal license for 2026
(professional or academic).

Implementation and using user supplied constitutive models consists of the three major de-
velopment steps:

1. creating a script file which defines model parameters (zsoil.usm file)

2. programming of a user supplied constitutive theory and then compiling it and linking to
produce usermodels.dll

3. making modifications within the system to instanciate user model

In the following sections we will describe how to implement a Huber-Mises elasto-plastic
model with plastic parameter dependent on temperature and an additional dependency of
flow parameters on temperature.

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

2.3 Creating script files for user model interface

We assume that for the time being user can redefine material properties only in the two
groups : "Elastic” and "Nonlinear" while the other ones can exclusively be extended (user
can add new parameters which are not handled by the original system but can be handled by
the user himself).

The script file zsoil.usm must be placed in the same folder as usermodels.dll (see 1).

In the following example this script file defines a Huber-Mises elasto-plastic model which
inherits the basic parameters setup from standard elastic model and thus it requires to add
group "Nonlinear” with 2 parameters: cohesion ¢ and evolution function number (load time
function) LT Fe¢(T). This evolution function modifies the cohesion ¢ that may depend on the
current temperature value (hence heat project should be attached to activate it). In addition
fluid thermal dilatancy parameter is added to the "Flow” parameters group.

To avoid unexpected application errors when analyzing the script file the following rules must
be fulfilled during its preparation.

e all keywords begin with @ character in the first column
e <Group> can be one of:

» @ MAIN (this group of parameters cannot be modified)
© DENS (this group of parameters cannot be modified)

*

» © ELAS (elastic parameters can be replaced)

x» @ GEOM (this group of parameters cannot be modified)
* @ FLOW (this group of parameters can be only extended)
x OCREEP (this group of parameters cannot be modified)

* @ NONL (nonlinear parameters can be replaced)

» @ HEAT (this group of parameters can be only extended)
@HUMID (this group of parameters can be only extended)

*

» Q@ INIS (this group of parameters cannot be modified)
x @ STAB (this group of parameters cannot be modified)

e <Group> string is always 6 characters long with additional spaces added between character
@ and the keyword

e <mode> can be one of

» REPLACE (means that standard parameters from template model will be replaced)

» ADD (means that a new set of parameters will be added to the standard ones)
e <string> is a string
e <par> is just a parameter string equivalent to <string>

e <count> is an integer value (usually nr of something)

10 ZSoil® 100101 report

2.3. CREATING SCRIPT FILES FOR USER MODEL INTERFACE

The general structure of a script file for a single supplied material model is as follows:
OMODEL_NAME

<string> (model name up to 10 characters)

<string> (name to be used in user interface dialog box)

<string> (here always use -; ELASTIC_V as a template model name)
<Group><count><mode>

< par >

< par >

up to <count>

In the considered case we want to define a model which inherits its basic properties setup
from the standard elasticity model (obligatory for time being (!)), labeled as USER1, with the
2 "Nonlinear” parameters, single additional parameter for "Flow” properties and additional
single parameter for group " Heat".

In that case the script file must be defined as follows:
OMODEL_NAME

USER1

User model number 1

ELASTIC.V

© NONL 2 REPLACE

LTF nr for ¢(T) <(T) = c LTF (T(t))
@ FLOW 1 ADD

LTF nr for k(T) k(T) =k LTF (T(t))
© HEAT 1 ADD

Fluid thermal dilatancy

Remarks:

e it is possible to define up to 60 user supplied models in the script file zsoil.usm
e units system is not available for user defined parameters

e it is worth to add few (empty) parameters to the supplied model because each modification
of number of parameters will result in loss of back compatibility

e the script file must be prepared with great care as any mistake may result in application
error

e the ZSoil menu analyzes the script file and generates the user interface dialog box auto-
matically (see Fig.(2.1))

ZSoil® 100101 report 11

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

e in the case of extension of the standard parameters groups like "Flow” or "Heat" an
additional button " User parameters” is added in standard dialog box (see Fig.(2.2))

= Parameters x
Value name Value
c 0
LTF nr for c(T)]
_ Ok | Cancel

Figure 2.1: Dialog box for Nonlinear parameters

2.4 Compiling, linking and debugging

Project file to compile and link usermodels.dll file, prepared with aid of the MS Visual Studio
2012, can be found in directory UserModels/calc/prj/user-models.

In the CFG directory one may keep the int.dum file that contains information on current
debugged data (content of this file looks like:

" C:\Program Files\ZSoil\ZSoil 2026 v26.01\Z_Calc.exe” [#QSTARTDIR C:\ProgramData\ZSoil
v2026\FULLQ#] [#@QPRJ D:\UserDevelopments\inp\mydata@#])

2.4.1 Remarks on debugging the code

An interactive debugging can be done only for single thread. It is a standard situation that
content of common blocks which are used to communicate with ZSoil is not visible. This
is a major drawback of Visual Studio debugger. To remedy this problem please make your
own temporary arrays or variables and copy data from common block to this auxiliary objects
(these object will be well visible under debugger).

12 ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

2 Materials X
Material definition

Bulk edit ‘ | Add o database v Import material(s) - Update from database v

‘ Name ‘ Continuum/Structure type ‘ Material formulation

1 Mat. 1 Continuum B[user model number 1 |~ ¥ Elastic Open
[V Unitweights Open
2 2D Flow X
[V Flow [Open |
Darcyslaw — [|
¥ Isotropic flow [~ Creep
Darcy's coefficient k [m/day] [v Nonlinear Open
1 = ™ Iniial Ko Stete
 Parameters X
Y [~ Heat
[Skip gravity term Value name Value [Humiday
van Genuchten s soil water retention curve LTF nr for k(T) 0
s, @
o 2
- 4 [~ Damping

Estimate parameters from granulometric curve \
Permeability function for unsaturated medium Irmay L‘

Settings for undrained drivers
[v Undrained behavior

Penalty factor for fluid bulk modulus K~F / K 1000000

Suction pressure cut-off 100 [k/m~2]
rprences |)
oK Cancel
[~ Advanced Help H OK | Cancel ‘ -

Help for curentmodel ‘ Help ‘ Cancsl oK

Figure 2.2: Dialog box for Flow parameters

2.4.2 Settings for Microsoft Visual Studio

Default settings for Command and Working Directory must be changed when default ZSoil®folder
has been changed during installation (see 2.3).

Additionally, information on current debugged data can be copied from int.dum file and
pasted to Command Arguments (see 2.4).

2.5 Programming user supplied constitutive model

2.5.1 Introduction

The main goal of each constitutive model is to find a new stress state for a given strain
increment at a given time instance N + 1 once the stress and other state variables are known
for the time instance N. Usually the constitutive level is limited to a single integration point
(so-called Gauss point in the case of standard finite elements) and thus the interface between
integration point (local level) and the parent finite element is an important part of the code to
be developed by the programmer. This part of the code has been prepared by ZSoil developers
and presented in the template file usrl.for containing the full code for Huber-Mises model
with cohesion value being dependent on temperature. The standard actions to be handled
during computation at the integration point level are as follows:

e update of the state variables (like stresses for instance) (via case(L_.GP_UPD_STATE))
and telling the system whether plasticity has occured (this information is returned through
iplas_TRA variable kept in the common block defined in trans.inc file)

e computation of a new stress state for given effective strain increment(after subtraction of
the initial and creep strain increments) (via case(L_.GP_NEW_STATE)); note that for mod-
els with constant elastic parameters the elastic stiffnes matrix is given through Dev_TRA

ZSoil® 100101 report 13

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

14

ruserl‘d‘luclels Property Pages

Configuration: Release

4 Configuration Properties
General

Debugging

Fortran

Linker

Resources

MIDL

Manifest Tool

Build Events

Custom Build Step

vV VY VYV

v Action
Command
Command Arguments

Working Directory c:\Program Files\ZSoil\ZSoil 2026 v26.00\ ~

Attach
Environment
Merge Environment
~ Debugger
Debugger Type
v Remote Settings
Connection
Remote Server Name
Remote Command

Working Directory

The application’s working directory. By default, the directory containing the project file.

? X

~ Platform: Active(x64) v Canfiguration Manager...
c:\Program Files\ZSoil\ZSoil 2026 v26.00\Z _Calc.exe

No
Yes
Native Only

Local

Figure 2.3: Default Command and Working Directory

r

userModels Property Pages

Configuration: Release

4 Configuration Properties
General

Debugging

Fortran

Linker

Resources

MIDL

Manifest Tool

Build Events

Custom Build Step

v VY VvV VW

v Action
Command

[#@STARTDIR C:\ProgramData\ZSoil v2026\FULL@#] [#@PRJ D:\Sg -

Woarking Directory
Attach
Environment
Merge Environment
v Debugger
Debugger Type
~ Remote Settings
Connection
Remote Server Name
Remote Command

Command Arguments

The command line arguments to pass to the application.

? X

~ Platform: Active(x64) ~ Configuration Manager...

c:\Program Files\ZS0il\ZSoil 2026 v26.00\Z _Calc.exe

c:\Program Files\ZSoil\ZSoil 2026 v26.00\
No

Yes
Native Only

Local

Figure 2.4: Command Arguments settings

ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

matrix (transferred via common block defined in trans.inc file); in case of nonlinear elas-
tic models the content of that matrix must be set exactly at that place; the computed
new stress state must be sent to the finite element level through array Sact_ TRA (kept in
common block defined in trans.inc file)

e initialization of all the state variables kept in the internal Gauss point storage

e setting the size of the internal gauss point storage size (expressed in integer*4 words); the
storage size must be returned through InfoOut array

e setting symmetry status for tangent stiffness matrix; the information whether the tangent
stiffness matrix is symmetric (1) or not (0) is returned through InfoOut array

e setting the current elastic stiffness matrix D; the current stiffness matrix must be returned
through InfoOut array

e setting the current elastic compliance matrix C; the current compliance matrix must be
returned through InfoOut array

e printing the material properties for groups specific for given model
e returning the information on

» current stress state (return through Sact_TRA array defined in common block in trans.inc
file)

» Poisson ratio (return through v_TRA variable defined in common block in trans.inc file)

» current stress level (return through Slev_TRA variable defined in common block in
trans.inc file)

» current plasticity index (return through Iplas_TRA variable defined in common block in
trans.inc file) (plastic code is a bit code that can be constructed using distinct codes
defined in plastic_codes.inc file

» current Young modulus (return through E_TRA variable defined in common block in
trans.inc file)

e modification of strength parameters during stability analysis

2.5.2 Adding user model call to the list of custom model calls

To activate models defined in the script file user must call them within the body of the
subroutine SUM_Models which is listed below (see SuppliedModels.for file).

IMS$ IF DEFINED (__BUILD_DLL_ZCALC)
IMS$ ATTRIBUTES DLLEXPORT :: SUM_Models
IMS$ END IF

include "..\ \nodecl.inc’

ZSoil® 100101 report 15

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

include "..\\models.inc'
include "..\\ prop.inc’
IMS$ IF DEFINED (__BUILD_DLL_ZCALC)
IMS$ ATTRIBUTES DLLIMPORT :: /PRO_models_common/
IMS$ END IF
IMS$ IF DEFINED (--BUILD_DLL_ZCALC)
IMS$ ATTRIBUTES DLLIMPORT :: /PRO_groups_common/
IMS$ END IF
IMS$ IF DEFINED (--BUILD_DLL_ZCALC)
IMS$ ATTRIBUTES DLLIMPORT :: /PRO_common/

IMS$ END IF

integer*4 :: model I model index

integer*4 :: order I action to be activated for this gauss point
real*8 :: props (*) I array with properties

integer*4 :: gp_buff (*) ! gauss point internal storage

integer*4 :: infoln (*) | input buffer
integer*4 :: infoOut (*) ! output buffer
integer*4 :: domain (*) I whole data space

character*10 xxx
xxx = PRO _TypeCharldArray(model)
select case (PRO_TypeCharldArray(model))

case (" USERYT")

call USR1_Model (order, props, gp_buff, infoln, infoOut, domain)

case default

stop 'USER_Models unknown'’
end select
end subroutine SUM_Models

To activate a new model a new "case” statement must be added to the selection list. Any
statement like !M S is a compiler directive.

2.5.3 Programming new constitutive model

To program a new constitutive model user should start from the delivered template file usrl.for
which contains an example of a Huber-Mises elasto-plastic model with strength parameter
being dependent on temperature. The detailed description of what the code should return
to the element level and through which data channels, has been described in the previous
sections. Hence the easiest way to program a new model is to copy usrl.for file onto new

16 ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

one, add it to the project (usermodels.dll).

2.5.4 Flow dependency on temperature

In this version the permeability coefficients are dependent on temperature and the source
term related to fluid thermal dilatancy is added. This is included in the kOfT .for module.
In the delivered code we assume that k = ko * f(T(t)) where ko is the one introduced as
standard permeability parameter in Flow parameters group. Another possibility where f(T(t))
is governed by some constitutive function is allowed, but user must introduce necessary pa-
rameters via script file and to prepare a code within body of FSS_MakePearmTempDependent
subroutine (see kofT.for module).

ZSoil® 100101 report 17

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

2.5.5 Exported functions

2.5.5.1 Functions to communicate with system

e to use this function always include '..\\anal_enu.inc’
e idata is of type : integer*4

e idata can be one of the following

IANA_ITER_NR : for this enumerator the function returns actual iteration number

(at the global level)

e to use this function always include '..\\anal_enu.inc’
e idata is of type : integer*4

e idata can be one of the following

IANA_SAFETY_ACT : function will return actual global safety factor during stability analysis
IANA_SAFETY _BEG : function will return initial global safety factor during stability analysis
IANA_SAFETY_END : function will return final global safety factor during stability analysis
IANA_GRAV_ACT : function will return actual gravity multiplier for the initial state analysis
IANA_GRAV_END : function will return final gravity multiplier for the initial state analysis

IANA_GRAV_INC : function will return increment of gravity multiplier for the initial state
analysis

IANA_DTIME_ACT : function will return actual time increment for time dependent drivers
IANA_DTIME_BEG : function will return initial time increment for time dependent drivers
IANA_TIME_FINAL : function will return final time value for time dependent drivers
IANA_DT_MULT : function will return time increment multiplier

IANA_TIME_ACT : function will return actual time

IANA_TIME_BEG : function will return initial time for time dependent drivers

18 ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

2.5.5.2 Constitutive functions

real*8 :: E ! young modulus (IN)
real*8 :: v | Poisson ratio (IN)
integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)

real*8 :: De(nstre,nstre) ! elastic stiffness matrix (OUT)

real*8 :: E ! young modulus (IN)
real*8 :: v | Poisson ratio (IN)
integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)

real*8 :: De(nstre,nstre) ! elastic compliance matrix (OUT)

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)

I returns first stress invariant |1

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)
I returns p (p=-11/3)

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)
real*8 :: s (nstre) (OUT)

I returns J2 invariant and stress deviator s(nstre)

ZSoil® 100101 report 19

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)

I returns q invariant (q=sqrt(3*J2))

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: strain (nstre) (IN) ! with gamma's for shear components

I returns sqrt(2/3 eij*eij) where eij is strain deviator

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: stress (nstre) (IN)

I returns 3-rd stress invariant

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: dl1dSig (nstre) (OUT)
I returns dI1/dSig derivative

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: S(nstre) ! (IN) stress deviator

real*8 :: dJ2dSig (nstre) (OUT)

I returns dJ2/dSig derivative

20 ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: S(nstre) ! (IN) stress deviator

real*8 :: xJ2 ! (IN) J2 stress invariant

real*8 :: dJ3_dSig (nstre) (OUT)

| returns dJ3/dSig derivative

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: xM(nstre,nstre) ! (OUT)

! 2 2

| returns d J2 / dSig derivative

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: sDev (nstre) ! (OUT) stress deviator

real*8 :: xI1 ! (OUT) first stress invariant 11

real*8 :: xJ2 1 (OUT) second stress invariant J2

real*8 :: xJ3 ! (OUT) thrid stress invariant J3

c converts 11,J2,J3 invariants to Haigh-Westergaard invariants xsi,ro, theta

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: xI1 ! (IN) first stress invariant I1

real*8 :: xJ2 ! (IN) second stress invariant J2

real*8 :: xJ3 ! (IN) thrid stress invariant J3

real*8 :: xsi | (OUT)

real*8 :: ro | (OUT)

real*8 :: theta ! (OUT)

ZSoil® 100101 report 21

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

integer*4 :: nstre (IN) ! (equals to 3 for plane stress, 4 for plane strain and 6 for 3D)
real*8 :: De (nstre,nstre) ! (IN) elastic constitutive matrix

real*8 :: a (nstre) ! (IN) dF/dSig gradient

real*8 :: b (nstre) ! (IN) dQ/dSig gradient

real*8 :: H ! (IN) hardening modulus

real*8 :: Dep (nstre,nstre) | (OUT) elastic constitutive matrix

2.5.5.3 Handling load time functions

integer*4 :: iltf I (IN) load time function index
real*8 :: Time ! (IN) time value
integer*4 :: M(*) ! (IN) data space

I returns value of this ooad time function for given time

2.5.5.4 Mathematical utilities

integer*4 :: n | (IN) matrix size (up to 3)
real*8 :: a(n,n) I(IN) real matrix
real*8 :: a_inv(n,n) !(OUT) output inverse matrix

real*8 :: detMIN ! (IN) minimum determinat value under which inversion is not done

integer*4 :: n ! (IN) matrix size (up to 3)
real*8 :: a(n,n) I(IN) real matrix
real*8 :: a_inv(n,n) !(OUT) output inverse matrix

I returns determinant value

logical*4 function MAT _Solvel23 (a,n,rhs,sol)

22 ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

integer*4 :: n ! (IN) matrix size (up to 3)
real*8 :: a(n,n) I(IN) real matrix

real*8 :: rhs(n) !(IN) rhs vector

real*8 :: sol(n) !(OUT) solution of a * sol = rhs

I returns TRUE if everything ok and FALSE if matrix is singular

integer*4 :: n ! (IN) vector size
real*8 :: a(n) !I(IN) real vector

I 2 is normalized

integer*4 :: nm,| ! (IN)
real*8 :: a(m,n),b(n,I) I(IN) real matrices
real*8 :: ¢(m,l) 1(OUT) real matrix

| procedure evaluates ¢ [m,l] = a [m,n] * b [n,]]

integer*4 :: nm,| ! (IN)
real*8 :: a(n,m),b(n,I) I(IN) real matrices

real*8 :: ¢(m,l) 1(OUT) real matrix

! T

| procedure evaluates ¢ [m,l] = a [n,m] * b [n,]]
S
subroutine MAT _axbT (a,m,n,b,l,c)
o S S

integer*4 :: nm,| | (IN)
real*8 :: a(m,n),b(l,n) !(IN) real matrices
real*8 :: ¢(m,l) 1(OUT) real matrix T

| procedure computes ¢ [m,I] = a [m,n] * b [I,n]

ZSoil® 100101 report 23

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

integer*4 :: n ! (IN)
real*8 :: a(n),b(n) !(IN) real vectors
real*8 :: c(n) !(OUT) real vector

I procedure computes c = a + b

integer*4 :: n ! (IN)
real*8 :: a(n),b(n) !(IN) real vectors
real*8 :: c(n) !(OUT) real vector

I procedure computes c = a - b

integer*4 :: n | (IN) matrix size
real*8 :; a(n,n) ! (IN/OUT) matrix
I symmmetrization of the square matrix with assumption that the upper

I triangle is defined

integer*4 :: n | (IN) matrix size
real*8 :; a(n,n) ! (IN/OUT) matrix
I symmmetrization of the square matrix with assumption that the lower

I triangle is defined

integer*4 :: n ! (IN) vector size

n
real*8 :: a(n) ! (IN) vector

24 ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

real*8 :: b(n) ! (OUT) vector
real*8 :: factor
| b = a * factor

I it is possible to call this routine like : call MAT _axfactor (a,3,1.5d0,a)

integer*4 :: n | (IN) matrix size
real*8 :: a(n) ! (IN) vector
real*8 :: b(n) ! (IN) vector

I returns scalar product a * b

integer*4 :: n ! (IN) matrix size
real*8 :: a(m,n) ! (IN) matrix

real*8 :: at(n,m) ! (OUT) transposed matrix

integer*4 :: n | (IN) matrix size
integer*4 :: ia(m,n) ! (IN) matrix
integer*4 :: iat(n,m) ! (OUT) transposed matrix

integer*4 :: N1 (N <=16!lll)
real*8 :: A(N,N) ! (IN/OUT) matrix given/inverted
logical*4 :: InvErr ! (OUT) inversion error flag (TRUE means failure)

integer*4 :: Max,N
real*8 :: A(Max,Max), B(N)

ZSoil® 100101 report 25

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

| solves A *x =B
I B is replaced by solution x
I in case of success returns 0

| else returns 1

integer*4 :: n ! (IN) nis up to 3 !!!
real*8 :: a(n,n) ! (IN)
real*8 :: det | (OUT) returned determinant

integer*4 :: N ! (IN) vector size
real*8 :: X(N) ! (IN/OUT) vector
real*8 :: Y(N) ! (IN) vector
real*8 :: factor

| evaluates X = X + factor * Y

integer*4 :: N ! (IN) vector size
real*8 :: X(N) ! (IN/OUT) vector
real*8 :: Y(N) ! (IN) vector
real*8 :: factor

I evaluates X = -X + factor * Y

real*8 :: a(3),b(3) ! (IN) vectors
real*8 :: ¢(3) ! (OUT) vector product c = ax b

ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

real*8 :: A(n,n)
real*8 :: value

I sets a diagonal matrix with diagonal elements of value ->value

real*8 :: A(n) ! (IN/OUT) vector

I changes sign of all elements of vector A

integer*4 :; Max,N ! (IN)

real*8 :: A(max,MaX) ! (IN) matrix

real*8 :: Rhs (N) ! (IN/OUT) vector

I solves A x b = Rhs using Crout decomposition
I solution is returned in array Rhs

I if matrix is nonsingular function returns 0

I else returns 1

integer*4 :: nRowA,nColA,nColB,nColC ! (IN)
real*8 :: A(nRowA,nColA) ! (IN) matrix
real*8 :: B(nRowA,nColB) ! (IN) matrix
real*8 :: C(nColB,nColC) ! (IN) matrix
real*8 :: AtBC(nColA,nColC) ! (OUT) matrix
real*8 :: buff (nRowA) ! (IN) work array

LT

I evaluates A B C

2.56.5.5 Functions to be used for addressing of subarrays in single

integer*4 work space

subroutine MEM _StartPos (ipos)

ZSoil® 100101 report

27

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

integer*4 :: size | (IN) subarray size

integer*4 :: iprec | (IN) int*4 words per single subarray item (1 for int*4 arrays and 2 for
real*8 arrays)

2.5.5.6 Functions for material data handling

integer*4 :: igroup ! (IN) group enumerator from include file "prop.inc’
integer*4 :: item p | (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I returns requested parameter

I igroup can be one of the following:
IPRO_GR_MAIN =1,

IPRO_GR_DENS = 2, ! density group
IPRO_GR_ELAS = 3, ! elastic parameters
IPRO_GR_GEOM = 4, | geometry
IPRO_GR_FLOW =5, ! flow
IPRO_GR_CREEP = 6, ! creep
IPRO_GR_NONL = 7, ! nonlinear parameters
IPRO_GR_HEAT = 8, ! heat
IPRO_GR_.HUMI = 9, ! humidity
IPRO_GRLINIS =10, ! initial state Ko
IPRO_GR_.STAB =11, ! local stability

I item is just an index, for certain parameter groups these indices are enumerated and
I kept in prop.inc include file

like for flow parameters: (see prop.inc file)
parameter(

IPRO_FLOW KX =1,

IPRO_FLOW_KY = 2,

28 ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

IPRO_FLOW _KZ = 3,
IPRO_FLOW_THETA = 4,
IPRO_FLOW_ANISO_X =5,
IPRO_FLOW_ANISO_Y = 6,
IPRO_FLOW_ANISO_Z =7,
IPRO_FLOW_BULK_MOD = 8,
IPRO_FLOW_Sr = 9,
IPRO_FLOW_ALPHA =10,
IPRO_FLOW _SKIP_GRAV =11,
IPRO_FLOW_UNDR_FLAG =12,
IPRO_FLOW_UNDR_EPS =13,
IPRO_FLOW_UNDR_PLIM =14,
IPRO_FLOW _n =15,
IPRO_FLOW krf_type =16,
IPRO_FLOW _use_Bishop_global _flag=17,
IPRO_FLOW _Bishop_mode=18,
IPRO_FLOW _use_K _air_flag =19,
IPRO_FLOW _K_air =20,
IPRO_FLOW _use_Biot_coeff_flag=21,
IPRO_FLOW Biot_Ks =22,
IPRO_FLOW _Biot_enforced = 23

integer*4 :: igroup ! (IN) group enumerator from include file "prop.inc’
integer*4 :: item p ! (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I returns requested parameter from additional material model storage

integer*4 :: igroup ! (IN) group enumerator from include file "prop.inc’
integer*4 :: item p ! (IN) parameter index

real*8 :: props (*) ! (IN) parameters array

ZSoil® 100101 report

29

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

| sets certain parameter value ->Value

integer*4 :: igroup ! (IN) group enumerator from include file "prop.inc’
integer*4 :: item p | (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I sets certain parameter value ->Value in additional storage

integer*4 :: item p ! (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

I returns parameter from group NONLINEAR for given item

integer*4 :: item p | (IN) parameter index
real*8 :: props (*) ! (IN) parameters array

| sets parameter from group NONLINEAR and for given item ->value

integer*4 :: item ! (IN) parameter index

real*8 :: Coeff ! (IN) given multiplier

real*8 :: props (*) ! (IN) parameters array

I modifies angle parameter (expressed in deg (!!!)) from group NONLINEAR
I parameter is kept in group NONLINEAR in -item- position

integer*4 :: item | (IN) parameter index
real*8 :: Coeff ! (IN) given multiplier

real*8 :: props (*) ! (IN) parameters array

30 ZSoil® 100101 report

2.5. PROGRAMMING USER SUPPLIED CONSTITUTIVE MODEL

I modifies any parameter from group NONLINEAR (multiplies by Coeff)
I parameter is kept in group NONLINEAR in -item- position

2.5.5.7 Other utilities

integer*4 :: n ! (IN) vector size
integer*4 :: iarray (n) ! (IN/OUT) vector

I clears an int*4 array

integer*4 :: n ! (IN) vector size
real*8 :: array (n) ! (IN/OUT) vector

I clears a real*8 array

integer*4 :: n ! (

integer*4 :: ia(n) ! (OUT) vector

integer*4 :: ib(n) ! (IN') vector
(

I copies ib ->i

[8)

integer*4 :: n ! (IN) vector size
integer*4 :: a(n) ! (OUT) vector
integer*4 :: b(n) ! (IN) vector

| copiesb->a()(a=b)

integer*4 :: nsd ! (IN) space size (2 or 3)

ZSoil® 100101 report

31

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

real*8 :: s(n) ! (IN) stress vector ordered (xx,yy,xy,zz,xz,yz)
real*8 :: p(nsd) (OUT) ! principal values
| copiesb->a()(a=Db)

32 ZSoil® 100101 report

2.6. SAMPLE DATA

2.6 Sample data
In directory INP you have 3 examples in which user defined model is used:

e cutT.inp (heat transfer problem)

e cutLMSL.inp (transient flow problem based on temperature field generated in project
cutT.inp)

e cutLMS2.inp (slope stability problem based on temperature field generated in project
cutT.inp)

ZSoil® 100101 report 33

CHAPTER 2. USER SUPPLIED CONSTITUTIVE MODELS FOR CONTINUUM

34 ZSoil® 100101 report

Chapter 3

User programmed output in
ZSoiI®postprocessor

3.1 Introduction

The ZSoil®2026 system allows the user to program his own output (in C++) and to plug
it into the postprocessor. This option is available to every user who has a legal license of
ZS0il®2026 (professional or academic).

The introduction of user programmed output consists of the two major steps:

1. creating necessary configuration files

2. programming of a user supplied C++ classes and then compiling them, and linking, to
produce useroutput.dll file

3.2 Creating necessary configuration files

The first configuration file (prepared in xml format) must be labeled as user_output.xml.
Structure of this file is as follows

i ?xml version="1.0" encoding="150-8859-15"7;
iUSER_.OUTPUT;

iELEMENT _CLASS label="SHELL" ;
iRESULT label="(User):As1-XX" jj/RESULT;
iRESULT label="(User):As1-YY" ;j/RESULT;
iRESULT label="(User):As2-XX" jj/RESULT;
iRESULT label="(User):As2-YY" ;j/RESULT;
i/ELEMENT_CLASS;

iELEMENT _CLASS label="CONTINUUM" ;
iRESULT label="(User):S*p" jj/RESULT;
i/ELEMENT_CLASS;

iELEMENT _CLASS label="BEAM"
iRESULT label="(User):As1";j/RESULT;
iRESULT label="(User):Asl-min";j/RESULT;
iRESULT label="(User):As2-min" j/RESULT

CHAPTER 3. USER PROGRAMMED OUTPUT IN ZSOIL®POSTPROCESSOR

i [ELEMENT_CLASS;
i/USER_.OUTPUT;

As we can see the first line is just the header of the xml file. The word jUSER_.OUTPUT
is the main keyword that opens the definition of the extra output, while j/USER_.OUTPUT;
closes it. Between these two keywords we can identify three output definitions for three classes
of elements (only these classes are supported for the time being) ie. shells, continuum and
beams. As an example a simple code is delivered that computes longitudinal reinforcement
(based on Wood-Armer bending moments) in shells (without taking into account membrane
efforts) and beams (without axial force either). For continuum as an example simple class
that computes S p nominal pore water pressure is delivered. In this xml file result labels
can only be edited. Moreover it is important to remember in which order these results are
declared, as later on, in the C+4 code, we will be refering to them through enumerators 0,
1...etc... Maximum 20 extra results for each element class can be handled by ZSoil®.

The second file that can be created by the user may include extra data like concrete properties
taken from the EC2 standard, steel properties etc... Content of the file (EC2design.csv) used
in the delivered code is as follows (this is *.csv format that can easily be edited with aid of
excel)

Concrete class C20/25;;
Ecm;30000;:MPa
fck;20;MPa
fctm;2.2:MPa
fctk;1.5;MPa
epsilon_c3;0.00175;
epsilon_cu3;0.0035;
gamma_c;1.4;

eta;1;

lambda;0.8;
rho_min;0.0013;

Steel RB500;;
fyk;500;MPa
gamma_s;1.15;
Reinforcement position;;
al;0.035;m

a2;0.035;m

3.3 Programming user supplied C++ code to handle extra output
The following C++ functions are delivered to start further developments

1. ExtraDataUserManipulation.cpp, ExtraDataUserManipulation.h
This function allows the user to read the EC2design.csv configuration file and to serve this
data if needed

2. GPRsIBeamUser.cpp, GPRsIBeamUser.h
This function allows the user to produce output for beam elements

36 ZSoil® 100101 report

3.3. PROGRAMMING USER SUPPLIED C++ CODE TO HANDLE EXTRA OUTPUT

3. GPRslContinuumUSER.cpp, GPRslContinuumUser.h This function allows the user to pro-
duce output for continuum elements

4. GPRsIShellUSER.cpp, GPRsIShellUser.h This function allows the user to produce output
for shell elements

5. QuadReinforcement.cpp, QuadReinforcement.h
This class is used to dimension reinforced concrete quadrilateral cross section

3.3.1 Example of programing user output for beam elements

In order to achieve full functionality of the user programmed output 3 basic functions in
GPRsIBeamUser.cpp must be defined i.e.

1. function give(...) that returns the result in form of double real value

2. function filter (..) that checks sign (or other verificaton) of the produced result (for instance
reinforcement area must be positive)

3. function get_unit (..) that returns unit label for produced result (see header #include
" \.-\zutl\zunits.h" for predefined unit labels)

Let us now analyze body of functions in GPRsIBeamUser.cpp that produce extra results for
beam elements.

#include "stdafx.h”

#include "QuadReinforcement.h”
#include " ../ GPRsIBeamUser.h"
#include " ../ UserExtraData.h”

#include " ../../zmate\CrossSection.h”
#include " ../../ zutl/zunits.h”
//
double GPRsl|BeamUser_give (int user_item , //USER_1=0,USER_2
CString & item_string ,
int user_material_number ,
UserExtraData*x usr_data ,
double *F, //NX,QY,QZ —> note that it can be NULL !
double *M, //MX,MY,MZ —> note that it can be NULL !
std :: vector <GPRslIBeamlLayersUser> & layers_core_info
std :: vector <GPRsIBeamLayersUser> & layers_reinf_info ,
int *xret ,
CrossSection *sect) //return 1 if ok
//
{
double h = 0.0;
double b = 0.0;

switch (sect—>type())
{
case CrossSection :: CROSS_SECTION_RECT :
{
CrossSection_.RECT =xsectRect = (CrossSection_.RECT %) sect;
b sectRect—>b;
h sectRect—>h;

switch(user_item)
case 0://reinforcement XX—bottom

{
double MEd = M [2];

ZSoil® 100101 report 37

CHAPTER 3. USER PROGRAMMED OUTPUT IN ZSOIL®POSTPROCESSOR

xret = 1;
if (MEd < 0.0)
return 0.0;
else
return QuadReinforcement::Quadl (usr-data ,b,h,MEd, QuadReinforcement ::BOTTOM);

}
break ;

case 1://
xret = 1;
return 0.0;

case 2://
*ret = 1;
return 0.0;

default:
xret = 0;
return 0.0;
break ;

}

break ;

case CrossSection :: CROSS_SECTION_UNDEFINED
case CrossSection :: CROSS_SECTION_RECT_TUBE
case CrossSection :: CROSS_SECTION_CIRCLE :
case CrossSection :: CROSS_SECTION_CIRC_TUBE
case CrossSection :: CROSS_SECTION_RECT_BOX :
case CrossSection :: CROSS_SECTION_I_SHAPE_S :
case CrossSection :: CROSS_SECTION_I_.SHAPE_NS
case CrossSection :: CROSS_SECTION_T_SHAPE
case CrossSection :: CROSS_SECTION_RECT_AXI

default
xret = 0;
return 0.0;
break ;
}
}
double GPRsIBeamUser_filter (int user_item , //USER_.1=0,USER_2
CString & item_string,
double rsl)
//

// this function filters user result after extrapolating it to the nodes (via superconvergent patch rec

switch (user_item)
{
case O0:
case 1:
case 2:
case 3:
return max(rsl ,0.0); //reinforcement must be positive
default:
return rsl;
}

}

//
//

int GPRsIBeamUser_get_unit (int user_item , CString & item_string ,UNIT_managerx umngr)

switch (user_item)
case 0://reinforcement XX—bottom

return UNIT_AREA;

}
break ;

case 1://reinforcement YY—bottom
return UNIT_AREA;

}

break ;

38 ZSoil® 100101 report

3.3. PROGRAMMING USER SUPPLIED C++ CODE TO HANDLE EXTRA OUTPUT

case 2://reinforcement XX—top

return UNIT_AREA;

}

break ;
case 3://reinforcement YY-—top

return UNIT_AREA;
}

break ;

default:
return UNIT_DIMLESS;
break ;

}
}

As we can see user receives complete information for beam integration point that includes
internal forces, but also (for layered beams) stresses, strains and other information for core
material and all reinforcement layers (at a given integration point).

3.3.2 Example of programing user output for shell/continuum ele-
ments

Same scheme, as the one described for beams, is used for shell and for continuum elements.

ZSoil® 100101 report 39

	Organization of compilation/linking/debugging environment
	User supplied constitutive models for continuum
	List of modifications with respect to ZSoil"472version 2025.
	Introduction
	Creating script files for user model interface
	Compiling, linking and debugging
	Remarks on debugging the code
	Settings for Microsoft Visual Studio

	Programming user supplied constitutive model
	Introduction
	Adding user model call to the list of custom model calls
	Programming new constitutive model
	Flow dependency on temperature
	Exported functions
	Functions to communicate with system
	Constitutive functions
	Handling load time functions
	Mathematical utilities
	Functions to be used for addressing of subarrays in single integer*4 work space
	Functions for material data handling
	Other utilities

	Sample data

	User programmed output in ZSoil"472postprocessor
	Introduction
	Creating necessary configuration files
	Programming user supplied C++ code to handle extra output
	Example of programing user output for beam elements
	Example of programing user output for shell/continuum elements

