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Chapter 1

INTRODUCTION

The current development in the field of dynamics is limited to the time history analysis. This
procedure, as the most versatile one for nonlinear applications, was extended to soil-structure
interaction problems for both single-phase and two-phase partially saturated media. In ad-
dition extraction of eigenmodes and eigenvalues were added. The theoretical background,
implementation schemes, user interface and finally applications and benchmarks will be pre-
sented in the following chapters.



CHAPTER 1. INTRODUCTION
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Chapter 2

THEORY

2.1 Equations of motion for single phase media

In the time history analysis, for given solution for accelerations, velocities and displacements
at time tn, we seek for the solution at time tn+1 by solving the following discretized (in time
and space) equations of motion

Ma+Cv +N (d) = Fext (2.1)

where nodal accelerations, velocities and displacements are denoted by a,v and d respectively.
The N(d) is a nonlinear vector of internal forces, the Fext is the external force vector, M is
the mass matrix (lumped or consistent) and C is the damping matrix. The Rayleigh damping
[2] is used here, i.e.:

C = αoM+ βoK (2.2)

where αo and βo are obtained by imposing damping rates at two different modal frequencies
(i,j): For information about applicable damping rates see e.g.[Bachmann]{

ξi
ξj

}
= 0.5

[
1/ωi ωj

1/ωj ωj

]{
αo

βo

}
(2.3)

Remarks:

1. C takes into account minor nonlinearities ignored in N (d)
2. K can be the initial or a tangent stiffness matrix

2.1.1 Nonlinear algorithms for arbitrary dynamic input for single
phase media

Newmark algorithm is one of the most common in transient dynamics. The following im-
plementation scheme is given by Hughes [4]. Let us consider equilibrium state at any time
instance tn+1 = (n+ 1) ·∆t



CHAPTER 2. THEORY

Window 2-1: Nonlinear Newmark algorithm

ZSoil®

The algorithm consists of the following 3 equations:

Man+1 +Cvn+1 +N (dn+1) = Fn+1

with

dn+1= dn+∆tvn +
∆t2

2
[(1− 2β)an + 2βan+1]

vn+1= vn+∆t[(1− γ)an+γan+1]

where subscripts n and n + 1 indicate values at instances tn and tn+1, respectively. The
algorithm is completed by the following predictors

d̃n+1= dn+∆tvn+
∆t2

2
(1− 2β)a

n

ṽn+1= vn+(1− γ)∆tan

and correctors:
dn+1= d̃n+1+β∆t

2an+1

vn+1= ṽn+1+γ∆tan+1

Window 2-1

As the problem to be solved is nonlinear, an iterative procedure is needed; Newton-Raphson
procedure is used here to linearize the problem. Let’s consider the static procedure first.

Window 2-2: Static Newton-Raphson procedure

ZSoil®

Let superscript (i+ 1) indicates iteration, in the vicinity of the displacement di+1
n+1

N
(
di+1
n+1

) ∼= N
(
di
n+1

)
+

dN

dd
∆d = N

(
di
n+1

)
+KT∆d

di+1
n+1 = di

n+1 +∆d

hence: {
KT∆d = Fn+1−N

(
di
n+1

) (
with d0

n+1 = dn

)
di+1
n+1=di

n+1+∆d

Convergence is reached when:∥∥Fn+1 −N
(
di+1
n+1

)∥∥ < TOLERANCE

Remarks:

The following algorithmic alternatives are possible:

1. Update K at each step and iteration: full Newton-Raphson
2. Update K at certain time steps and/or iterations: modified Newton-Raphson
3. KT = K0: constant stiffness algorithm

Window 2-2

10 ZSoil® 100101 report



2.1. EQUATIONS OF MOTION FOR SINGLE PHASE MEDIA

Let’s now consider the corresponding DYNAMIC PROCEDURE in terms of incremental dis-
placements ∆d

Window 2-3: Nonlinear dynamic Newton-Raphson-Newmark procedure
ZSoil®

Equivalent static formulation

Let’s define an equivalent static problem:

N∗ (d) = Ma+Cv +N (d)

K∗ =

(
dN∗

dd

)
=

M

∆t2β
+

γ

∆tβ
CT +KT

1. Initialization

d0 = d (0)

v0 = v (0)

2. For each ∆t

A: Compute predictors

d̃n+1 = dn +∆tvn + (1− 2β)
∆t2

2
an

ṽn+1 = vn + (1− γ)∆tan

di=0
n+1 = d̃n+1

vi=0
n+1 = ṽn+1

ai=0
n+1 = 0

B: For each ∆d

i. Solve

∆Fi
n+1 = Fn+1 −N∗ (di

n+1

)
K∗∆d = ∆Fi

n+1

di+1
n+1 = di

n+1 +∆d

ii. Compute correctors

ai+1
n+1 =

di+1
n+1 − d̃n+1

∆t2β

vi+1
n+1 = ṽn+1 +∆tγai+1

n+1

iii. Next iteration if ∥∆Fi
n+1∥ > TOLERANCE ⇒ i = i+ 1

C: Next time step

if t < Tmax ⇒ n = n+ 1

Remarks: The following algorithmic alternative are possible:
1. Update KT at each step and iteration: full Newton-Raphson
2. Update K at certain time steps and/or iterations: modified Newton-Raphson
3. KT = K0 : constant stiffness algorithm
4. The algorithm does not work for β = 0. A similar algorithm, expressed in terms of

incremental accelerations ∆a, can be derived which supports β = 0.

Window 2-3
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CHAPTER 2. THEORY

High frequencies introduce noise into the numerical solution. To overcome this problem a
Nonlinear HHT-α algorithm [3] for arbitrary dynamic input is developed in Z Soil.

Window 2-4: HHT-α algorithm

ZSoil®

The original linear form of the algorithm is written:

Man+1 + (1 + α)Cvn+1 − αCvn + (1 + α)Kdn+1 − αKdn = Fn+α

with
[∗]n+α=(1 + α)[∗]n+1 − α[∗]n

thus
Fn+α=(1 + α)Fn+1−αFn

The corresponding nonlinear statement can be written as

Man+1 + Cvn+α +N(dn+a) = Fn+α

with

dn+1 = dn+∆tvn +
∆t2

2
[(1− 2β)an + 2β an+1]

vn+1 = vn + ∆t [(1− γ) an + γ an+1]

Remarks:

1. Hilber proposes: −0.3 <α< 0 , γ=
(1− 2α)

2
, β=

(1−α)2

4
2. α= 0 corresponds to Newmark’s algorithm
3. For unexperienced user the HHT-α algorithm with α = −0.3, is certainly the safest way to

go. The choice of a time-step, small enough to correctly represent the load, and a proper
mesh refinement is then the only question left.

Window 2-4

2.1.2 Absorbing boundaries for single-phase media

One of the simplest ways to avoid reflections of waves outgoing from the domain is to use
Lysmer type dashpots.

12 ZSoil® 100101 report



2.2. EQUATIONS OF MOTION FOR DYNAMIC CONSOLIDATION OF TWO-PHASE
FULLY OR PARTIALLY SATURATED MEDIA

Window 2-5: Absorbing boundaries (single-phase): viscous force vector

ZSoil®

The resulting damping force vector that is added to the right hand side is defined as follows

Fv = −
∫
Γ

NTσsdΓ

In the above equation N is a matrix of standard shape functions and σs is a viscous stress
defined as

σ = −
{

1

cp
(λs + 2µs)nn

T +
µs

cs

(
t1t1

T + t2t2
T
)}

vs

The corresponding shear and dilatational wave velocities are denoted by

cs =

√
G

ρ

cp =

√
λ+ 2 G

ρ

while solid velocity vector at a given point by vs.

The normalized normal and tangential vectors are denoted by n and t1, t2 respectively.

Window 2-5

2.2 Equations of motion for dynamic consolidation of two-phase
fully or partially saturated media

In the current development the u− p formulation is adopted. It allows to analyze real world
problems concerning earthquake engineering. In this approach the relative fluid acceleration
with respect to the solid skeleton is neglected. Presence of the inertial term in the Darcy law
is left to the user’s choice (by default we assume that it is present).

ZSoil® 100101 report 13



CHAPTER 2. THEORY

Window 2-6: Governing equations for two-phase dynamic concolidation

ZSoil®

The two-phase dynamic consolidation of fully or partially saturated media is governed by two
balance equations

• Balance of the momentum:
∂σij

∂xj
+ γ bi = ρ üi

• Balance of the mass for the fluid: S̃ ε̇kk − vFi,i − cṗ = 0

supplied by the corresponding initial and boundary conditions. In the above equations the
total stress is expressed via Bishop’s effective stress principle

σij = σ′
ij + α̃S̃δijp

and relative fluid velocity is governed by the Darcy’s law

vFi = kijkr(S)

(
1

γF
p,j + bj −

1

g
üj

)
Remarks:

1. α̃ is the elastic Biot coefficient (α̃ = 1− Kt

Ks

) (Kt is the elastic bulk modulus while Ks is

the elastic grains bulk modulus)

2. S̃ can be selected as the standard saturation ratio S or corrected effective saturation

S
1/(nm)
e =

(
S − Sr

1− Sr

)1/(nm)

3. term
1

g
üj in the Darcys law is optional

4. the kr function can be defined using formula by Irmay (kr =

(
S − Sr

1− Sr

)3

) or by Mualem

(kr = S
1/2
e

(
1−

(
1− S

1
m
e

)m)2
)

5. storage coefficient c = c(p) = n

(
S

Kw

− dS

dp

)
+
α̃− n

Ks

S

(
S − dS

dp
p

)
6. Kw is the water-air mixture bulk modulus defined as

1

Kw

=
S

Kf

+
1− S

Ka

7. Kf is the fluid bulk modulus and Ka is the air bulk modulus at the atmospheric pressure
(Ka = 100 kPa)

Window 2-6
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2.2. EQUATIONS OF MOTION FOR DYNAMIC CONSOLIDATION OF TWO-PHASE
FULLY OR PARTIALLY SATURATED MEDIA

2.2.1 Nonlinear algorithms for arbitrary dynamic input for two-phase
media

In the following derivations the HHT−α scheme will be used. The standard Newmark method
is easily recovered from HHT−α assuming α=0.

Window 2-7: Integration scheme for kinematic quantities and pore pressure

ZSoil®

Expressions for solid displacements and velocities [12]:

un+1 = un + u̇n∆t+
∆t2

2
[(1− 2β) ün + 2βün+1]

u̇n+1 = u̇n +∆t [(1− γ) ün + γün+1]

Expression for pore pressure:

pn+1 = pn + (1− θ) ṗn∆t+ θ∆tṗn+1

In the HHT scheme

pn+α = (1 + α)pn+1 − αpn

ṗn+α = (1 + α)ṗn+1 − αṗn

un+α = (1 + α)un+1 − αun

u̇n+α = (1 + α)u̇n+1 − αu̇n

ün+α = (1 + α)ün+1 − αün

Hence variation of one of the above quatities is expressed as follows

δ(...)n+α = (1 + α)δ(...)

Window 2-7

ZSoil® 100101 report 15



CHAPTER 2. THEORY

Window 2-8: Balance equations in matrix form

ZSoil®

Balance of momentum (HHT scheme)

Mün+1 +Cu̇n+α + F′
INT (un+α) +CFpn+α = FEXT n+α

Balance of the mass for fluid phase written at time step n+ α(
C̃F
)T

u̇n+α−
1

γF
HF pn+α+RF ün+α−hF −MF ṗn+α+QF −PF pn+α+PFpextn+α = 0

where

F′
INT (un+α) =

∫
Ω

BTσ(un+α)dΩ

CF =

∫
Ω

NTα̃S̃n+α1
T

C̃F =

∫
Ω

NTα̃Sn+α1
T

HF =

∫
Ω

∇NTk∇NdΩ

MF =

∫
Ω

NTcn+αNdΩ

PF =

∫
Γs

NTkvNdΓ

RF =

∫
Ω

∇NTk
1

g
NdΩ

hF =

∫
Ω

∇NTkbdΩ

QF =

∫
Γq

NTqdΩ

Meaning of the parameters appearing in the integrals
cn+α = c(pn+α)
kv - penalty factor for seepage element
g - earth acceleration (g=9.81 m/s2)
q - imposed fluid flux at boundary Γq

Window 2-8
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2.2. EQUATIONS OF MOTION FOR DYNAMIC CONSOLIDATION OF TWO-PHASE
FULLY OR PARTIALLY SATURATED MEDIA

Window 2-9: Linearization of balance equations in the HHT format

ZSoil®

In this derivation we assume that current saturation ratio S and storage function value c are
kept constant and equal to their values at previous step.

Linearization of the matrix form of balance equations of the momentum and fluid mass yields
the following result

 M+K(1 + α)β∆t2 +C(1 + α)γ∆t CF (1 + α)θ∆t(
C̃F
)T

(1 + α)θ∆t+
θ

γ
(1 + α)RF θ

γ
(1 + α)

(
− 1

γF
HF θ∆t−MF −PF θ∆t

) { δü
δṗ

}
=

 FEXT n+α −Mün+α −Cu̇n+α − F′
INT −CFpn+α

1

γ∆t

(
−QF + hF −

(
C̃F
)T

u̇n+α +
1

γF
HFpn+α −RF ün+α +MF ṗn+α +PFpn+α −PFpextn+α

) 
Remarks:

1. The system of equations is solved for solid accelerations δü and pore pressure rates δṗ

2. The resulting system of linearized equations is nonsymmetric in general

3. To eliminate spurious spatial pressure oscillations a stabilization procedure based on pres-
sure Laplacian is used (same as for the standard static consolidation problems)

Window 2-9

2.2.2 Absorbing boundaries for dynamic consolidation of two-phase
media

In the current development the zeroth-order paraxial formulation by Modaressi and Bonzenati
[8] is adopted. It is coherent with the u − p type formulation. The viscous force and flux
vectors are defined in the following Window.

ZSoil® 100101 report 17



CHAPTER 2. THEORY

Window 2-10: Absorbing boundaries (two-phase): viscous force and flux vectors

ZSoil®

The resulting viscous force and flux vectors that are added to the right hand side are defined
as follows

Fv
u = −

∫
Γ

NTσsdΓ

Fv
p = −

∫
Γ

NTΦdΓ

In the above equation N is a matrix of standard shape functions, σs is a total viscous stress
and Φ is a fluid flux transferred through paraxial boundary defined as

σs = −
{
ρ
c2p
Vp1

(λs + 2µs)nn
T + ρ cs

(
t1t1

T + t2t2
T
)}

vs + n
(
α̃S̃ p− α̃oS̃o po

)

Φ = k

[
ρ

(
1−

c2p
V 2
p1

− ρF
)]

nTas

The corresponding shear and dilatational wave velocities for solid phase are expressed as
follows

cs =

√
G

ρ
cp =

√
λ+ 2 G

ρ

The approximate first dilatational wave velocity for saturated medium is defined as

V 2
p1 = c2p

(
1 +

Q

λ+ 2 G

)
and

1

Q
= c(p)

Solid velocity and acceleration vectors are denoted by vs and as.

The normalized normal and tangential vectors are denoted by n and t1, t2 respectively.
Remarks:

1. The So po term reflects the initial saturation/pressure condition prior dynamic time history
analysis

2. k is the permeability value along n direction; it can be computed as k = nTkn

3. ρ value is computed as ρ = ρD + n S ρF

Window 2-10
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2.3. MESH SIZE AND TIME STEPPING

2.3 Mesh size and time stepping

To trace wave propagation in the medium we need approximately 10 nodes per wavelength.
The mesh size depends on the maximum frequency fmax that is to be represented. For typical
seismic application fmax is limited up to 10 Hz. Hence the maximum mesh size should be
smaller than

he ≤ λ

10
=

v

10 fmax
(2.4)

In the above expression v is the lowest wave velocity that i to be considered in the analyzed
problem. In most cases v is taken as shear wave velocity.

Size of the applied time step, even for implicit integration schemes, is limited to a certain
value too. This is so due to the fact that the smallest fundamental period of vibration needs
to be represented by at least 10 points (same amount as for the spatial discretization). Hence
the time step limitation can be formulated as follows

∆t ≤ he

v
(2.5)

and v is the highest wave velocity.

2.4 Seismic input

The seismic input can be applied

• in the absolute format for rigid base model; here certain nodal displacements/velocities/accelerations
are imposed and driven by an associated load time function (this is so-called rigid base
model because waves are reflected by this boundary); this definition can be made through
the acceleration/velocity/displacement boundary conditions

• in the absolute format for compliant base model; here seismic input is given as an imposed

acceleration ag =
··
ug that is integrated to velocities (via Newmark method) and applied

at the base of the model where viscous dashpots are added; this way the acceleration
record is converted to the traction time history and applied to the bottom boundary of the
model (the bottom boundary is identified as a line segment (2D) or surface (3D), shared
by viscous boundary located at y = yMIN = const) (this is compliant base model that
circumvents waves reflections)

• in the relative format for rigid base model; here seismic input is given as an imposed ac-

celeration ag =
··
ug of the ground that is global to the whole structure; the corresponding

inertia forces are shifted to the right hand side

F(t) = −Mag(t) (2.6)

In the absolute format displacements are total ones, referred to inertial coordinate system
while in the relative one, displacements are relative ones with respect to the fixed nodes, and
are referred to noninertial coordinate system (”shaking table approach”)

ZSoil® 100101 report 19



CHAPTER 2. THEORY

2.4.1 Rigid base model

Window 2-11: Rigid base model and seismic input

ZSoil®

The idea of application of the acceleration record to the rigid base model is shown in the
figure

Real situation Model

soil Es s
 soil Es s

s s s s

Rigid base

bedrockEb b


a(t) / v(t) / u(t)
Rigid base

b b

Impedance ratio αz =
ρs vss
ρr vsr

→ 0 (complex for nonzero damping)

In the rigid base model the following assumptions are made

• Nodes at the bottom are fixed
• (a) Motion is imposed by displacement/velocity/acceleration boundary conditions (absolute
format)

⋆ Output: absolute displacements/velocities/accelerations

• (b) Motion is imposed by application of global acceleration to the whole domain (relative
format)

⋆ Output: relative displacements/velocities/accelerations (with respect to the rigid base)

Window 2-11
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2.4.2 Compliant base model

Window 2-12: Compliant base model and seismic input

ZSoil®

The idea of application of the acceleration record to the compliant base model is shown in
the figure [7].

Real situation Model

soil Es s
 soil Es s



b d k

s s s s

bedrock
bedrockEb b


Compliant base

b b
a(t)

(viscous dashpots)

Impedance ratio αz =
ρs vss
ρr vsr

> 0 (complex for nonzero damping)

• Nodes at the bottom may freely move

• Viscous dashpots are added to the base (with bedrock parameters !)

• Motion can exclusively be applied through the acceleration record (seismic input)

1. Output: absolute displacements/velocities/accelerations

• Accelerations are integrated to velocities via Newmark method (a(t) → vsu(t))

• Viscous shear tractions are computed and applied to the base

• The input a(t) does not need to be compatible with a(t) computed at the base (!)

Window 2-12
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Window 2-13: Why compliant base model is better than rigid one ?

ZSoil®

In order to show why compliant base model is usually better than the rigid base one let us
consider a simple example of a shear layer problem for subsoil as shown in the figure. The
target acceleration record is given at the surface therefore we need to transfer it to the base
of the FE model using linear deconvolution procedure (described in section 5.3.2). After
linear deconvolution we will compute response of the rigid and compliant base models for
deconvoluted signal perturbing shear wave velocity vs in the first soil layer by 5%.

E 100000 kP 0 25 17 kN/ 3

Target signal

20m
E=100000 kPa, v=0.25, =17 kN/m3

=1%, vs=152 m/sSoil‐1

20m E=200000 kPa, v=0.25, =18 kN/m3

=1% vs=209 m/s
Soil‐2

=1%, vs=209 m/s

20m E=1000000 kPa, v=0.25, =23 kN/m3

=1%, vs=413 m/s
bedrock

Halfspace
E=1000000 kPa, v=0.25, =23 kN/m3

=1%, vs=413 m/s

0 2 4 6 8 10 12 14 16 18

t[s]

6

4

2

0

2

4

6

8

a
[m
/s

2
]

Target earthquake
Computed at top

Result for rigid base

22 ZSoil® 100101 report



2.4. SEISMIC INPUT

0 2 4 6 8 10 12 14 16 18

t[s]

6

4

2

0

2

4

6

8

a
[m
/s

2
]

Target earthquake
Computed at top

Result for compliant base

The two results show that the compliant base model (especially for low material damping) is
insensitive to the introduced error.

Window 2-13
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Chapter 3

SOIL-STRUCTURE INTERACTION
PROBLEMS

3.1 Domain Reduction Method (DRM) for single-phase media

The Domain Reduction Method was proposed by Bielak at al.[1], [11]. The main goal of
this method is to analyze the computational model that concerns the structure and a small
adjacent part of subsoil. This way the size of the problem to be solved is substantially reduced.
The basic assumptions and theory are shown in the following Windows.

Window 3-1: DRM method: general idea

ZSoil®

fault

Pe

A 
u ( ), u ( ), u ( )A A At t t& &&

Full model of subsoil and structure, and source of the loading Pe(t)

Remarks:

1. At any point displacements, velocities and accelerations induced by Pe(t) are denoted by
u(t), u̇(t), ü(t)

2. The complex model with a large subsoil zone and source of load Pe(t) is split into back-
ground model (see Win.3-2) and a reduced model (see Win.3-3)

Window 3-1
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Window 3-2: DRM method: background model

ZSoil®

Γ
Ωο

Ω+

Γ+

Γe
fault

Pb
o

ub
o

ue
o

ui
o

Remarks:

1. In the background model the structure is removed and free field motion is analyzed

2. Displacements, velocities and accelerations induced by Pe(t) are denoted by u0(t), u̇0(t),
ü0(t)

Window 3-2

Window 3-3: DRM method: reduced model

ZSoil®

Γ
Ω

Ω+
Γ+

^

Γe

^

Pb

Pe

Remarks:

1. The interior domain is denoted by Ω while exterior one by Ω+

2. Γ is the boundary that separates interior and exterior domains

3. Γ+ is a boundary where viscous damping elements are to be put to cancel wave reflections

4. Kinematic quantities at any point in the interior domain will be denoted with the lower
index ()i, at boundary Γ with index ()b and in the exterior domain with index ()e

5. In the exterior domain the following displacement decomposition is used:
ue = u0

e + ûe
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6. Nodal points that belong to the boundary Γ are denoted as boundary (b), nodes that are
in the Ω+ domain and do not belong to the boundary Γ are denoted as exterior (e),
the remaining ones are denoted as interior (i)

Window 3-3
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Window 3-4: DRM method: governing equations

ZSoil®

After partitioning of the whole domain into Ω and Ω+ one may write equations of motion,
neglecting viscous damping terms, in Ω and Ω+ respectively[

MΩ
ii MΩ

ib

MΩ
bi MΩ

bb

]{
üi

üb

}
+

[
KΩ

ii KΩ
ib

KΩ
bi KΩ

bb

]{
ui

ub

}
=

{
0
Pb

}
(1)

[
MΩ+

bb MΩ+

be

MΩ+

eb MΩ+

ee

]{
üb

üe

}
+

[
KΩ+

bb KΩ+

be

KΩ+

eb KΩ+

ee

]{
ub

ue

}
=

{
−Pb

Pe

}
(2)

The two above sets of equations can be written in the global form as follows:

 MΩ
ii MΩ

ib 0

MΩ
bi MΩ

bb +MΩ+

bb MΩ+

be

0 MΩ+

eb MΩ+

ee


üi

üb

üe

+

 KΩ
ii KΩ

ib 0

KΩ
bi KΩ

bb +KΩ+

bb KΩ+

be

0 KΩ+

eb KΩ+

ee


ui

ub

ue

 =


0
0
Pe


(3)

Let us decompose displacement vector in the exterior domain ue into free field displacement
u0
e and residual one ûe as follows:

ue = u0
e + ûe (4)

Substituting eq.(4) into eq.(3) modifies eq.(3) to the following form:

 MΩ
ii MΩ

ib 0

MΩ
bi MΩ

bb +MΩ+

bb MΩ+

be

0 MΩ+

eb MΩ+

ee


üi

üb

ẅe

+

 KΩ
ii KΩ

ib 0

KΩ
bi KΩ

bb +KΩ+

bb KΩ+

be

0 KΩ+

eb KΩ+

ee


ui

ub

we

 =


0

−MbeΩ
+ ü0

e −KbeΩ
+ u0

e

Pe −MeeΩ
+ ü0

e −KeeΩ
+ u0

e

 (5)

The Pe term can now be derived from eq.(2) assuming that it is solved for a simpler problem
that does not include the structure

Pe = MebΩ
+ü0

b +MeeΩ
+ü0

e +KebΩ
+u0

b +KeeΩ
+u0

e (6)

By substituting the above Pe term to the eq.(5) the following form of the right hand side
term is obtained:

Peff =


0

−MΩ+

be ü0
e −KΩ+

be u0
e

MΩ+

eb ü0
b +KΩ+

eb u0
b

 (7)

Remark:For lumped mass matrix terms MbeΩ
+ ü0

e, MebΩ
+ ü0

b dissappear

Window 3-4
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Window 3-5: DRM method: seismic input in the relative format (rigid base model)

ZSoil®

Seismic input is given as an imposed acceleration ag of the ground, common to the whole
structure. In this case the external force vector can be written as follows:

F(t) = −Mag(t) + Fext(t) (1)

In this approach the displacements are relative ones with respect to the fixed nodes and are
referred to noninertial coordinate system (”shaking table approach”).

In the Domain Reduction Method the inertia force term −Mag(t) on the right hand side
must be modified for nodal points which are in the exterior domain Ω+ (this forces are not
present in the exterior domain). By partitioning it into interior, boundary and exterior nodes
it takes the following form:

−Mag(t) =


−MΩ

iiag −MΩ
ibag

−MΩ
biag −MΩ

bbag −MΩ+

bb ag −MΩ+

be ag

0

 (2)

Remark:The Mie = 0, Mei = 0

Window 3-5
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3.2 DRM metod for two-phase media

Window 3-6: DRM method for two-phase media: governing equations

ZSoil®

After partitioning of the whole domain into Ω and Ω+ one may write equations of motion
and fluid mass balance in Ω and Ω+ respectively

Overall equilibrium in Ω

[
MΩ

ii MΩ
ib

MΩ
bi MΩ

bb

]{
üi

üb

}
+

[
KΩ

ii KΩ
ib

KΩ
bi KΩ

bb

]{
ui

ub

}
+

[
CΩ

ii CΩ
ib

CΩ
bi CΩ

bb

]{
u̇i

u̇b

}
+[

CFΩ
ii CFΩ

ib

CFΩ
bi CFΩ

bb

]{
pi

pb

}
=

{
0
Pb

}
(1)

Overall equilibrium in Ω+[
MΩ+

bb MΩ+

be

MΩ+

eb MΩ+

ee

]{
üb

üe

}
+

[
KΩ+

bb KΩ+

be

KΩ+

eb KΩ+

ee

]{
ub

ue

}
+

[
CΩ+

bb CΩ+

be

CΩ+

eb CΩ+

ee

]{
u̇b

u̇e

}
+[

CFΩ+

bb CFΩ+

be

CFΩ+

eb CFΩ+

ee

]{
pb

pe

}
=

{
−Pb

Pe

}
(2)

Fluid mass balance in Ω

[
RFΩ

ii RFΩ
ib

RFΩ
bi RFΩ

bb

]{
üi

üb

}
+


(
C̃F

Ω

ii

)T (
C̃F

Ω

ib

)T(
C̃F

Ω

bi

)T (
C̃F

Ω

bb

)T
{ u̇i

u̇b

}
−

1

γF

[
HFΩ

ii HFΩ
ib

HFΩ
bi HFΩ

bb

]{
pi

pb

}
−

[
MFΩ

ii MFΩ
ib

MFΩ
bi MFΩ

bb

]{
ṗi

ṗb

}
=

{
−QF

i + hF
i

−QF
b + hFΩ

b

}
(3)

Fluid mass balance in Ω+

[
RFΩ+

bb RFΩ+

be

RFΩ+

eb RFΩ+

ee

]{
üb

üe

}
+


(
C̃F

Ω+

bb

)T (
C̃F

Ω+

be

)T

(
C̃F

Ω+

eb

)T (
C̃F

Ω+

ee

)T

{ u̇b

u̇e

}
−

1

γF

[
HFΩ+

bb HFΩ+

be

HFΩ+

eb HFΩ+

ee

]{
pb

pe

}[
MFΩ+

bb MFΩ+

be

MFΩ+

eb MFΩ+

ee

]{
ṗb

ṗe

}
=

{
QF

b + hFΩ+
b

−QF
e + hF

e

}
(4)
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The overall equilibrium and fluid mass balance can be written in the global form as follows:

Overall equilibrium

 MΩ
ii MΩ

ib 0

MΩ
bi MΩ

bb +MΩ+

bb MΩ+

be

0 MΩ+

eb MΩ+

ee


üi

üb

üe

+

 KΩ
ii KΩ

ib 0

KΩ
bi KΩ

bb +KΩ+

bb KΩ+

be

0 KΩ+

eb KΩ+

ee


ui

ub

ue

+

 CΩ
ii CΩ

ib 0

CΩ
bi CΩ

bb +CΩ+

bb CΩ+

be

0 CΩ+

eb CΩ+

ee


u̇i

u̇b

u̇e

+

 CFΩ
ii CFΩ

ib 0

CFΩ
bi CFΩ

bb +CFΩ+

bb CFΩ+

be

0 CFΩ+

eb CFΩ+

ee




pi

pb

pe

 =


0
0
Pe

 (5)

Fluid mass balance

 RFΩ
ii RFΩ

ib 0

RFΩ
bi RFΩ

bb +RFΩ+

bb RFΩ+

be

0 RFΩ+

eb RFΩ+

ee




üi

üb

üe

+



(
C̃F

Ω

ii

)T (
C̃F

Ω

ib

)T
0(

C̃F
Ω

bi

)T (
C̃F

Ω

bb

)T
+

(
C̃F

Ω+

bb

)T (
CFΩ+

be

)T
0

(
C̃F

Ω+

eb

)T (
C̃F

Ω+

ee

)T




u̇i

u̇b

u̇e

−

1

γF

 HFΩ
ii HFΩ

ib 0

HFΩ
bi HFΩ

bb +HFΩ+

bb HFΩ+

be

0 HFΩ+

eb HFΩ+

ee




pi

pb

pe

−

 MFΩ
ii MFΩ

ib 0

MFΩ
bi MFΩ

bb +MFΩ+

bb MFΩ+

be

0 MFΩ+

eb MFΩ+

ee




ṗi

ṗb

ṗe

 =


−QF

i + hF
i

0+ hFΩ
b + hFΩ+

b

−QF
e + hF

e

 (6)

Let us decompose displacement ue and pressure pe vectors, in the exterior domain, into free
field ones u0

e and p0
e and residual ûe and p̂e as follows:

ue = u0
e + ûe (7)

pe = p0
e + p̂e (8)

Substituting terms (7) and (8) into eq.(3) and (6) yields

ZSoil® 100101 report 31



CHAPTER 3. SOIL-STRUCTURE INTERACTION PROBLEMS

Overall equilibrium

 MΩ
ii MΩ

ib 0

MΩ
bi MΩ

bb +MΩ+

bb MΩ+

be

0 MΩ+

eb MΩ+

ee


üi

üb

¨̂ue

+

 KΩ
ii KΩ

ib 0

KΩ
bi KΩ

bb +KΩ+

bb KΩ+

be

0 KΩ+

eb KΩ+

ee


ui

ub

ûe

+

 CΩ
ii CΩ

ib 0

CΩ
bi CΩ

bb +CΩ+

bb CΩ+

be

0 CΩ+

eb CΩ+

ee


u̇i

u̇b

˙̂ue

+

 CFΩ
ii CFΩ

ib 0

CFΩ
bi CFΩ

bb +CFΩ+

bb CFΩ+

be

0 CFΩ+

eb CFΩ+

ee




pi

pb

p̂e

 =


0

−MΩ+

be ü0
e −KΩ+

be u0
e −CΩ+

be u̇0
e −CFΩ+

be p0
e

Pe −MΩ+

ee ü0
e −KΩ+

ee u0
e −CΩ+

ee u̇0
e −CFΩ+

ee p0
e

 (9)

Fluid mass balance

 RFΩ
ii RFΩ

ib 0

RFΩ
bi RFΩ

bb +RFΩ+

bb RFΩ+

be

0 RFΩ+

eb RFΩ+

ee




üi

üb

¨̂ue

+



(
C̃F

Ω

ii

)T (
C̃F

Ω

ib

)T
0(

C̃F
Ω

bi

)T (
C̃F

Ω

bb

)T
+

(
C̃F

Ω+

bb

)T (
CFΩ+

be

)T
0

(
C̃F

Ω+

eb

)T (
C̃F

Ω+

ee

)T




u̇i

u̇b

˙̂ue

−

1

γF

 HFΩ
ii HFΩ

ib 0

HFΩ
bi HFΩ

bb +HFΩ+

bb HFΩ+

be

0 HFΩ+

eb HFΩ+

ee




pi

pb

p̂e

−

 MFΩ
ii MFΩ

ib 0

MFΩ
bi MFΩ

bb +MFΩ+

bb MFΩ+

be

0 MFΩ+

eb MFΩ+

ee




ṗi

ṗb

˙̂pe

 =


−QF

i + hF
i

hFΩ
b

0

+



0

hFΩ+
b −RFΩ+

be ü0
e −

(
C̃F

Ω+

be

)T

u̇0
e +

1

γF
HFΩ+

be p0
e +MFΩ+

be ṗ0
e

−QF
e + hF

e −RFΩ+

ee ü0
e −

(
C̃F

Ω+

ee

)T

u̇0
e +

1

γF
HFΩ+

ee p0
e +MFΩ+

ee ṗ0
e


(10)

The Pe and Qe terms can now be derived from eq.(2), and eq.(4) respectively, assuming
that these are solved for a simpler problem that does not include the structure
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Pe = MΩ+

eb ü0
b +MΩ+

ee ü0
e +KΩ+

eb u0
b +KΩ+

ee u0
e +CΩ+

eb u̇0
b +CΩ+

ee u̇0
e +CFΩ+

eb p0
b +CFΩ+

ee p0
e (11)

−Qe+hF
e = RFΩ+

eb ü0
b+RFΩ+

ee ü0
e+

(
C̃F

Ω+

eb

)T

u̇0
b+

(
C̃F

Ω+

ee

)T

u̇0
e−

1

γF
HFΩ+

eb p0
b−

1

γF
HFΩ+

ee p0
e−

MFΩ+

eb ṗ0
b −MFΩ+

ee ṗ0
e (12)

By substituting the Pe term to the eq.(5) the following form of the right hand side term is
obtained:

Peff =


0

−MΩ+

be ü0
e −KΩ+

be u0
e −CΩ+

be u̇0
e −CFΩ+

be p0
e

MΩ+

eb ü0
b +KΩ+

eb u0
b +CΩ+

eb u̇0
b +CFΩ+

eb p0
b

 (13)

 MΩ
ii MΩ

ib 0

MΩ
bi MΩ

bb +MΩ+

bb MΩ+

be

0 MΩ+

eb MΩ+

ee


üi

üb

¨̂ue

+

 KΩ
ii KΩ

ib 0

KΩ
bi KΩ

bb +KΩ+

bb KΩ+

be

0 KΩ+

eb KΩ+

ee
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(14)

Similarly substituting the Qe term to the eq.(10) yields the following form of the right hand
side term

Qeff =


0

hFΩ+
b −RFΩ+

be ü0
e −

(
C̃F

Ω+

be

)T

u̇0
e +

1

γF
HFΩ+

be p0
e +MFΩ+

be ṗ0
e

RFΩ+

eb ü0
b +

(
C̃F

Ω+

eb

)T

u̇0
b −

1

γF
HFΩ+

eb p0
b −MFΩ+

eb ṗ0
b

 (15)
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 RFΩ
ii RFΩ

ib 0

RFΩ
bi RFΩ

bb +RFΩ+

bb RFΩ+

be

0 RFΩ+

eb RFΩ+

ee



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
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

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
−QF
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i
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b

0

+Qeff (16)

Window 3-6
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Chapter 4

CONSTITUTIVE MODELS FOR
DYNAMIC APPLICATIONS

4.1 HS-s model

The small strain version (HSs) of HS model can be used to model soil behavior in dynamic
simulations. It includes stress/strain dependent stiffness moduli varying from the initial value
Eo at very low strains through Eur up to E50 and less for larger strain amplitudes. The
assumed hypo-elastic Hardin-Drnevich law used at low strains allows to model hysteretic
damping fairly well. The main drawback of the model in dynamic simulations is such that
it cannot reproduce well the effect of progressive densification due to cyclic shearing with
constant stress amplitude. Behavior of the model in drained and undrained triaxial test
conditions is shown in figures below. One may notice that in the drained case all stress cycles
of same amplitude will produce plastic straining and variation of position of the internal shear
mechanism only in the first cycle. Densification/dilation is produced only by shear plastic
mechanisms. In the undrained case the excess of pore water pressure is generated only when
volumetric irreversible strains are produced. For constant stress amplitudes the excess of pore
pressure will be observed only in the first cycle and then it will stabilize. Hence this model
cannot be used for loose sands that may liquefy due to cyclic straining and another one,
called densification model (see 4.2) is recommended.
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Figure 4.1: HSs model in drained triaxial test
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Figure 4.2: HSs model in undrained triaxial test
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4.2 Densification model

Densification model, designed to reproduce behavior of loose sandy soils was derived directly
from the HSs model by adding an extra explicit densification mechanism. Hence it belongs
to the class of elasto-plastic models with shear strain hardening (this mechanism can be
canceled in the user interface) controlled in addition by the Mohr-Coulomb criterion (see
the corresponding report on HSs model). As the densification mechanism is defined by an
explicit formula the purely deviatoric plastic flow rule is assumed for both current shear yield
surface and, if needed, the MC one (dilatancy angle ψ = 0o). Moreover, the volumetric
(cap) mechanism is canceled. As in the HSs model, small strain stiffness variation in the
range of low strains can be activated.However, contrary to the HSs model all formula for the
unloading-reloading Eur and initial Eo stiffness formula depend on effective mean pressure p′

rather than on σ3, and are expressed as follows:

Eur = Eref
ur

(
p∗
σref

)m

Eo = Eref
o

(
p∗
σref

)m

(4.1)

where: p∗ = max(p′, σL)

σL is usually assumed to be of order of few kPa (5 kPa for instance) to avoid zero stiffness
for vanishing mean effective stress.

The small strain stiffness variation in the range of small strains, described by the Hardin-
Drnevich formula, will help to include the effect of hysteretic damping in dynamic simulations.

The incremental stress-strain relation can be written in the form

dσ = De ( dε− dεp − dεacc) (4.2)

where the infinitesimally small increment of accumulated volumetric strain dεacc in the
Zienkiewicz’s model is defined as follows

dεaccij = − A

1 +B κ
dκ mij (4.3)

dκ = exp(−γ η̃) dξ (4.4)

dξ =
√

deij deij (4.5)

deij = dεij − dεm δij (4.6)

(4.7)

The two densification laws are considered in the current version i.e. Zienkiewicz’s [12] and
Sawicki’s one [10].

In original formulations of both densification laws the mapping tensor mij is defined as

mij =
1

3
δij and δij denotes the Kronecker’s symbol. The stress ratio η̃, in Zienkiewicz’s

model, is defined as η̃ =
q(σij)

p
or η̃ =

q(σ̃ij − σo
ij)

p
(here the initial stress state is denoted

by σo
ij). The latter definition was used by Zienkiewicz to solve the problem of liquefaction of

San Fernando dam. It is also used in the current implementation.
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4.2.1 Sawicki’s model for time domain applications

The main finding of Sawicki and Świdziński, derived from cyclic simple shear tests, is such that
there exists so called common compaction curve representing given loose sand, no matter how
big are the shear strain cycles. In the original version of Sawicki’s model the densification law
is insensitive to the mean stress variation. With this assumption the accumulated volumetric
strain produced in N cycles of cyclic shear test, run at constant given shear strain amplitude
γo, is defined by the following expression

εacc = eo C1 ln (1 + C2 z) (4.8)

where z parameter, corresponding to the accumulated deviatoric straining, is defined as

z =
1

4
N γ2o

The main drawback of this model is such that it cannot be directly used in standard FE
calculations in time domain because of presence of the term N that is equal to the number
of the uniform shear strain cycles.

It is however possible to adapt Sawicki’s model to time domain applications using a similar
densification law as the one proposed by Zienkiewicz. It can easily be shown that Zienkiewicz’s
model, even for constant mean stress, cannot reproduce the common compaction curve. To
achieve this goal let us formulate the modified densification law as a set of the following
equations:

dκ = η̃ dξ (4.9)

dεaccv = − A

1 +Bκ
dκ (4.10)

η̃ =
q(σ̃ij)

p
(4.11)

σ̃ij = σij − σo
ij (4.12)

In the above equations the stress level η̃ is computed based on q invariant of the stress
difference measured between the current configuration and the one at the initial state. Let
us now examine this law in the context of strain driven simple shear test that generates
stress paths within the elastic domain. If we assume that the mean stress remains constant
during the test (this is not possible when isotropic mapping vector is used in the definition
of accumulated strain) then the elastic stiffness remains constant, and the stress ratio η̃ is
computed as:

η̃ =
|τxy|
po

=
G(po)

∣∣γxy∣∣
po

(4.13)

dξ =
√

d eij d eij =
√
2 | dεxy| =

√
2

2

∣∣ dγxy∣∣ (4.14)

dκ = η̃ dξ =
G(po)

∣∣ dγxy∣∣
po

√
2

2

∣∣ dγxy∣∣ (4.15)
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After 1/4 of full shear strain cycle with constant strain amplitude γxy = γo the accumulated

κ value is equal to κ1/4 =

√
2

2

G(po)

po

1

2
γ2o. Hence after N cycles it is equal to

κ(N) = 4N
1

2

√
2

2

G(po)

po
γ2o =

√
2N

G(po)γ
2
o

po
(4.16)

Let us now assume that in Zienkiewicz’s model we fix the C parameter to zero what allows
us to integrate the accumulated strain in the closed form. The closed form expressions for
accumulated volumetric strain produced by the two models can be written as follows

Sawicki’s model : εSv = eo C1 ln

(
1 + C2

1

4
Nγ2o

)
(4.17)

modified Zienkiewicz’s model : εZv =
A

B
ln

(
1 +B

√
2N

G(po)

po
γ2o

)
(4.18)

From the above expressions one can deduce that by adding η̃ function to the Zienkiewicz’s
densification law, and fixing parameter C to zero, one may obtain in the accumulated volumet-
ric strain value the term Nγ2o. This yields the following relations between C1, C2 parameters
of original Sawicki’s model and A, B of the corresponding modified Zienkiewicz’s one

B =
1

4
√
2
C2

po
G(po)

(4.19)

A = eoC1 B (4.20)

(4.21)

where stress dependent shear modulus G(po) is expressed by the formula

G(po) = Gref
o

( po
σref

)m
(4.22)

After replacing the term G(po) by the formula 4.22 in expression 4.19 one gets the following
definition of B parameter

B =
1

4
√
2
C2

po

Gref
o

( po
σref

)m =
1

4
√
2
C2

σref

Gref
o

1

σref

po( po
σref

)m =
1

4
√
2
C2

σref

Gref
o︸ ︷︷ ︸

Bo

( po
σref

)1−m

︸ ︷︷ ︸
f1(

po
σref )

(4.23)

The corresponding A parameter can be expressed as follows:

A = eo C1 Bo f1

( po
σref

)
(4.24)

This densification law, that is a time domain equivalent of Sawicki’s model, will not reproduce
the common compaction curve for shear strain amplitudes that yield plastic straining. In that
case the stress ratio η̃ tends to some asymptotic value and therefore the resulting accumulated
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strain amplitude will significantly be underestimated. To remedy this problem a modification
of evolution law for shear straining history parameter κ was proposed

dκ = η̃ f2

(
ξpl

ξ

)
dξ (4.25)

and the newly introduced function f2 is expressed as follows

f2

(
ξp

ξ

)
= 1 + C

(
ξp

ξ

)D

(4.26)

where C and D are the parameters derived from optimization procedure based on given C1

and C2 values. It has been found that C and D parameters are insensitive to the mean stress
value. Therefore one may optimize them for a given reference mean stress.

The history of plastic straining is represented by ξp parameter integrated in time using the
following expression

ξp =

t∫
to

√
ėpij ė

p
ij dt (4.27)

It has to be emphasized here that in the M-C plastic mechanism the purely deviatoric plastic
flow rule (ψ = 0o) is adopted. This way all volumetric plastic changes are described by the
densification law.

To summarize the densification law that is equivalent to the Sawicki’s model one has to define
the 2 parameters C1 and C2. For given C1, C2 and assumed level of the mean stress po the
C and D parameters are derived by minimizing the following functional

M∑
i=1

N∑
j=1

eoC1 ln

(
1 + C2

1

4
jγ2o

)
− εaccv (γoi, j)

eoC1 ln

(
1 + C2

1

4
jγ2o

)


2

→ min (4.28)

where i is the number of all considered values of shear strain amplitudes γo (all must generate
plastic straining), N is the maximum number of strain cycles, j is the current cycle index, γoi
is the current shear strain amplitude and εaccv is obtained by numerical integration of eq.4.10
for problem of cyclic simple shear test.

An example of the optimization procedure is shown in figure 4.3

The evolution of the accumulated volumetric strain fairly well approximates Sawicki’s common
compaction curve expressed as a function of εvacc with respect to the z parameter.

In the above simuations we assume that mean stress p does not vary during drained simple
shear test. To achieve this goal one cannot assume the mapping tensor to be expressed as

mij =
1

3
δij. In the current implementationmij may have nonzero terms exclusively on normal

strain directions but only those that are not constrained by the boundary conditions. In the
practical boundary value problems this setting is made once the increment of the strains is
given ∆εij
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Figure 4.3: Result of optimization of C and D parameters

mij =
|εij|√∑3

i=1 ε
2
ii

δij (4.29)

However, it may vary from iteration to iteration for more complex problems.

This procedure, in case of a simple shear test, yields the mij tensor with only one nonzero
value that corresponds to the vertical strain component.

Several examples showing all capabilities of the model are given in the benchmark section
devoted to densification model.

4.2.2 User interface for densification model

The user interface specific to this model consists of the two group of parameters located in
parameter groups Elastic and Nonlinear.

All parameters in group Elastic are basicaly the same as those for the HSs model with the
only difference such that stiffness moduli are functions of mean effective stress p′ and not σ3

(see Fig.(4.5) below). In the advanced setup one may activate small strain option and set
the Eref

o and γ0.7 values. In the basic version (small strain is canceled) the Eref
ur modulus

must represent the equivalent small strain stiffness E at the reference stress σref and strain
amplitude of order 10−4.

The user interface for parameters collected in group Nonlinear is shown in Fig.(4.6). By
setting proper values of the parameters user may cancel several effects that can be described
by this model. The three major effects can be switched ON/OFF:
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Figure 4.4: Comparizon of compaction curves for original Sawicki’s model and its modified
time domain version

1. Shear hardening plasticity within the MC envelope (⊠ Shear plastic mechanism )

2. MC envelope (by setting very large values of strength parameters)

3. Densification mechanism (⊠ Densification mechanism )

It has to be mentioned that by deactivating the MC plasticity the shear hardening mechanism
should be deactivated too.

Densification mechanism is responsible for modeling progressive densification during straining
(not necessarily plastic). User may use the two densifications laws i.e. by Zienkiewicz or by
Sawicki. Activation of shear hardening plasticity allows to reproduce static liquefaction with
the phase transition line located below the MC line in the p − q plane. It also allows to
reproduce hyperbolic form of the q−ε1 curves in the drained triaxial test in similar manner as
in the HSs model. The MC yield surface controls plastic admissibility of the resulting stress
state. The accumulated strain mapping set to ⊚ Isotropic will impose isotropic projection
of the accumulated volumetric strain increment on all three normal directions while the
⊚ Extended will impose nonproportional projection described by the formula 4.29.
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Figure 4.5: User interface for elastic stiffness parameters

Figure 4.6: Strength and densfication law parameters in group Nonlinear
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Chapter 5

USER INTERFACE

5.1 Transient dynamic driver

Window 5-1: Dynamics for single-phase soil-structure interaction problems

ZSoil®

A. Problem type: Deformation
B. Analysis type: any
C. Driver: Dynamics
C1. Driver type: Driven load

This driver can be used for solving a transient dynamic soil-structure interaction problems
for single-phase media. The domain reduction method (DRM) can be used to reduce size of
the computational model by setting DRM boundary layer of elements in the preporcessor and
declaring the free field motion project in the edit field under Associated preprocessed

projects

Control data of the driver are:
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Key Option Comment Default Remarks
C1 1,,3,5,6
C1.1 Time start Initial time value (0.0) 2,3
C1.2 Time end Final time value (1.0) 2,3
C1.3 Time increment Initial time step (0.01) 3, 8
C1.4 Multiplier Time step multiplier (1.0)
C1.5 Nonl. Solver Control data
C1.6 Dyn. Solver Control data 9C

Window 5-1
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Window 5-2: Dynamics for two-phase soil-structure interaction problems

ZSoil®

A. Problem type: Deformation+Flow
B. Analysis type:Plane Strain, 3D
C. Driver: Dynamics
C1. Driver type: Consolidation

This driver can be used for solving a coupled transient dynamic soil-structure interaction
problems for two-phase media. In the current version the domain reduction method (DRM)
for the two-phase problems is not yet supported.

Control data of the driver are:

Key Option Comment Default Remarks
C1 1,,3,5,6
C1.1 Time start Initial time value (0.0) 2,3
C1.2 Time end Final time value (1.0) 2,3
C1.3 Time increment Initial time step (0.01) 3, 8
C1.4 Multiplier Time step multiplier (1.0)
C1.5 Nonl. Solver Control data
C1.6 Dyn. Solver Control data

Window 5-2

Remarks:

1. Driver type: Driven Load is the only available driver for single-phase media, for two-
phase both Driven Load and Consolidation are available although the first one does
not seem to be meaningful

2. Time is treated as a physical parameter (consistently with material data)
3. It is recommended to use seconds ([s]) as default time units
4. Time parameter is used as a common argument of all existence and load time functions.
5. A sequence of Dynamic Drivers can be defined, with different time step specification.
6. Within a sequence of Dynamic, Driven Load Drivers, an intermediate Time Dependent

(i.e. concerning statics) or Stability Driver can be added.
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7. In the sequence of drivers the state of the structure at the start of subsequent driver
takes into account results (e.g. plastic status, stresses, deformation) of previous dynamic
driver(s).

8. Additional time steps will be automatically enforced by load and existence time functions,
at all their characteristic points

9. There are two possible methods of imposing seismic input to the structure:
A: by setting time dependent displacement /velocity / acceleration at support node(s) and

solving for total motion

B: as an imposed global acceleration ag =
··
ug of the ground, common to the whole

structure, and solving for relative motion.
C: Detailed description of control data for dynamic driver is given in Win.(5-3)
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Window 5-3: Transient dynamics settings

ZSoil®

A. sets which type of the mass matrix is to be used; only lumped masses are supported
B. sets the time history analysis algorithm type (Newmark or Hilber-Hughes-Taylor (HHT))

B1. sets α parameter for HHT algorithm (default -0.3), α = 0 corresponds to Newmark alg.
B2. sets β parameter for HHT (depends on α) and Newmark (default 0.25)
B3. sets γ parameter for HHT (depends on α) and Newmark (default 0.50)
B4. sets θ parameter for integration scheme for pore pressure (default 0.50)
C. sets Rayleigh damping factors αo (applies to the mass) and βo (applies to the stiffness)

C1. sets directly Rayleigh damping factor αo

C1. sets directly Rayleigh damping factor βo

C3. runs Rayleigh damping factors calculator and puts results in C1. and C2. edits
C3.1 sets 1-st angular frequency ω1, frequency f1, or period T1 depending on the state of the

combo-box C3.8
C3.2 sets 2-nd angular frequency ω2, frequency f2, or period T2 depending on the state of the

combo-box C3.8
C3.3 sets percentage of the critical damping for ω1, f1 or T1
C3.4 sets percentage of the critical damping for ω2, f2 or T2
C3.5 runs αo and βo calculation
C3.6 shows calculated αo

C3.7 shows calculated βo

C3.8 switch from angular frequency to frequency, or period
D. adds current dynamic settings to the list of control settings to be used later in conjunction

with a selected driver Dynamics in Analysis & Drivers dialog box
E. sets filtering of mass matrix for selected global or local directions

E1. switches ON/OFF filtering of mass matrix
E2. selects active directions for mass matrix
E3. selects local or global coordinate system to filter mass matrix along selected directions
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E4. activates a dialog box to set up the local coordinate system for mass filtering (note that
for local systems defined through the vector in 3D only filtering in the local X direction
(vector direction) is meaningful as the other two directions are not defined in a unique
manner)

Remark:
Assumed damping factors apply to all materials unless overwritten locally in Materials

Window 5-3
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5.2 Eigenvalue and eigenmodes driver

The Eigenvalue and eigenmodes driver can be used for Deformation and Deformation+Flow
analyses. In the latter case mass density depends on the current saturation ratio.

Window 5-4: Eigenvalues and eigenmodes

ZSoil®

A. Problem type: Deformation
B. Analysis type: any
C. Driver: Eigenvalues
C1. Driver type:

In the Deformation mode this driver can be used for detection of declared number of eigen-
values and corresponding eigenmodes for single-phase media including structural elements.

Control data of the driver are:

Key Option Comment Default Remarks

C1.1 No of modes 1, 2

C1.6 Dyn. Solver Control data

Remarks:

1. Number of detected eigenvalues is limited by total number of free degrees of freedom
2. For each eigenmode mass participation factors are computed for all directions

Window 5-4

ZSoil® 100101 report 51



CHAPTER 5. USER INTERFACE

Window 5-5: Eigenvalues and eigenmodes: Vibration modes for shear layer

ZSoil®

Data: BENCHMARKS/DYNAMICS/EIGENMODES/shear-layer-64.INP

A. Problem type: Deformation
B. Analysis type: Plane Strain

C1. Driver type: Eigenvalues

This example concerns eigenvalue analysis of shear layer. To analyze such a problem one can
set periodic boundary conditions that helps to tie selected degrees of freedom on two opposite
boundaries. In the considered case we assume that uA = uB. The computed eigenvalues,
eigenmodes and mass participation factors are given in the postprocessor. The computed
eigenvalues are also stored in the *.log file.

Window 5-5
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Window 5-6: Eigenvalues and eigenmodes

ZSoil®

A. Problem type: Deformation+Flow
B. Analysis type: any
C. Driver: Eigenvalues
C1. Driver type:

In the Deformation+Flow mode this driver can be used for detection of declared number of
eigenvalues and corresponding eigenmodes for two-phase media including structural elements.
Contrary to the Deformation mode the mass matrix of continuum elements includes water
content corresponding to the current saturation ratio. Hence it is recommended to run the
Initial state driver first and then continue with the Eigenvalue one.

Control data of the driver are:

Key Option Comment Default Remarks

C1.1 No of modes 1, 2

C1.6 Dyn. Solver Control data

Remarks:

1. Number of detected eigenvalues is limited by total number of free degrees of freedom
2. For each eigenmode mass particicpation factors are computed for all directions

Window 5-6

5.3 Seismic input

Window 5-7: Seismic input

ZSoil®

This option is available from the main menu Assembly/Seismic input. Seismic input
option allows the user to apply the earthquake in the finite element model

ZSoil® 100101 report 53



CHAPTER 5. USER INTERFACE

• in the relative format for rigid base model; here seismic input is given as an imposed acceler-

ation ag =
··
ug of the ground that is global to the whole structure; the corresponding inertia

forces are shifted to the right hand side F(t) = −Mag(t) (set ⊚ Rigid base model ON)

• in the absolute format for compliant base model; here seismic input is given as an imposed

acceleration ag =
··
ug that is integrated to velocities (via Newmark method) and applied

at the base of the model where viscous dashpots must be added; this way the acceleration
record is converted to the traction time history and applied to the bottom boundary of the
model (the bottom boundary is identified as a line segment (2D) or surface (3D), shared
by viscous boundary located at y = yMIN = const) (compliant base model circumvents

waves reflections) (set ⊚ Compliant base model ON)

Seismic input dialog window

Remarks:

1. Each acceleration record describes a time dependent acceleration vector that can be set in
one of global X, Y or Z directions, or in the direction defined by a given vector

• for global X direction : ag(t) = ao (1, 0, 0)
T · LTF (t)

• for global Y direction : ag(t) = ao (0, 1, 0)
T · LTF (t)

• for global X direction : ag(t) = ao (0, 0, 1)
T · LTF (t)

• for given vector v: ag(t) = aov · LTF (t)

where ao is the value set in the edit field Acceleration [ ]

2. Acceleration values can be set as:
A: relative to gravity acceleration g = 9.81[m/s2]
B: absolute

3. Seismic input may consist of collection of acceleration records. At given time instance
global acceleration will be created as a sum of all records

4. Each record may have a different Load Function
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5. To perform baseline correction/Butterworth filtering or linear deconvolution of the given
record use acceleration time history toolbox that can be activated at the Load time

function level
6. Activate ⊚ Compliant base model option if seismic signal was transformed by linear

deconvolution procedure
7. ⊚ Compliant base model / ⊚ Rigid base model switch is common for all applied

earthquake records

Window 5-7
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5.3.1 Baseline correction to ground motion acceleration time histo-
ries

Window 5-8: Major goal of baseline correction

ZSoil®

Displacement time history (baseline correction inactive) for shear layer problem driven by
imposed acceleration applied at the base

The baseline correction procedure can be summarized as follows

• Given: set of points: ai(ti)
• Goal: remove trend line from ai(ti) (use qubic polynomial)
• Method: solve optimization problem:

∑n
i {ai − ã(ti)}2 →MIN

• Trend line equation: ã(ti) = ao + a1 ∗ ti + a2 ∗ t2i + a3 ∗ t3i
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Baseline correction OFF
Baseline correction ON

Displacement time history after baseline correction

Window 5-8
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Window 5-9: User interface for baseline correction and filtering the acceleration time history

ZSoil®

To apply the acceleration time histories as a seismic input, or imposed BC expressed in terms
of accelerations, a special toolbox was designed that allows to filter given a(t) signal using
one of the high pass, low pass, band pass or band stop (combo box (A)), 2-nd, 3-rd or
4-th order Butterworth filters. This toolbox performs also so called baseline correction (3-
rd order polynomial is used) that eliminates the drift effect in the computed displacement
time histories. It may also export uncorrected/corrected acceleration time histories but also
acceleration, velocity and displacement undamped/damped Fourier spectra to the Excel.

Remarks:
1. To perform baseline correction press button Update ; the result of the correction will be

shown in diagram (C2)
2. To add an additional signal filtering one may use a Butterworth filter; for low pass filter set

value f1 that will cancel frequencies higher than f1 (the gain function (A3) shows how the
Fourier amplitudes are scaled); for high pass set again value f1 that will cancel frequencies
lower than f1, and for band pass and band stop set values f1 and f2 that give the range
of frequencies that are to be maintained or canceled.

3. Three formats of data bases can be imported: the US data bank published at http://
nsmp.wr.usgs.gov/data.html, the European one published at http://www.isesd.hi.is/ESD Local/
frameset.htm and the free format where pairs (t, a(t)) are stored (E1); user may browse

one of the mentioned data banks by pressing button Browse..
4. One may trim the acceleration record from the left and right side (use buttons (D1), (D2))
5. After downloading the acceleration records user may store them at his own directory; by

clicking the button (E3) user may select one of the stored records
6. To export filtered, uncorrected/corrected (through baseline correction) acceleration time

histories, and corresponding undamped/damped Fourier spectra, to the Excel, press button
(F)

Window 5-9
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5.3.2 Linear deconvolution of seismic records

Window 5-10: Idea of linear deconvolution procedure

ZSoil®

Target signal
1

Soil‐1
n

Soil‐2 vo
lu
tio

n2

De
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nv

3

bedrock
4

Halfspace
A li d

4

Applied

• Signal is measured at control point (target signal)

• In finite element model we need to have a signal at the base

• The goal of the deconvolution procedure is to transfer the target signal to the base of the
FE model

Window 5-10
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Window 5-11: Theoretical basis for linear deconvolution procedure

ZSoil®

The theoretical bases for linear deconvolution procedure can be found in textbooks on soil
dynamics (see Kramer [6]).

• Shear wave equation for harmonic motion with frequency ω:
u(x, t) = A ei(kx+ωt) +B e−i(kx−ωt)

• First term represents upward propagating wave and second the reflected downward propa-
gating one

• If we know amplitudes at one point, all other can easily be computed using the following
recursion:

• Am+1 =
1

2
Am (1 + αm) e

i kmhm +
1

2
Bm (1− αm) e

−i kmhm

• Bm+1 =
1

2
Am (1− αm) e

i kmhm +
1

2
Bm (1 + αm) e

−i kmhm

• G∗ = G (1 + 2 i ξ), v∗s =

√
G∗

ρ
, k∗m =

ω

v∗s
, hm - layer depth

• At top of the layer the following boundary condition is assumed: τxy = 0 → A1 = B1

For given set of soil layers and acceleration record at the control point the linear deconvolution
procedure consists of the following steps

1. Filter the original signal with Butterworth filter

2. Perform FFT procedure on earthquake record (note that input is real but output is complex
valued)

3. For each frequency and given set of layers find a transfer function Fij(ω) (it is different
for the rigid base model and compliant base one)

4. Multiply result of FFT by transfer functions for each ωi

5. Perform an inverse FFT (input is complex but output will be real valued again)

Window 5-11
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Window 5-12: User interface for linear deconvolution of seismic signals

ZSoil®

The linear deconvolution toolbox allows the user to transfer given acceleration time history
record from the control point to the base of the finite element model. The two base models
may be used, the rigid base and compliant base model.

Remarks:

1. Prior running deconvolution procedure one may need to add a quiet zone to the initial part
of the input signal (waves traveling upward need a certain time to hit the control point)

2. Input signal is shown in (C1) field
3. To perform linear deconvolution select type of the model to be used (rigid base or compliant

one) (R)
4. Fill the grid with the data for each soil layer (label, depth, Young modulus, Poisson ratio,

bulk unit weight, damping properties) (T); note that the last layer is reserved for bedrock
that is modeled as an elastic halfspace (depth is not meaningful for halfspace layer)

5. Define on top of which layer signal is given (S1)
6. Define on top of which layer signal is to be transfered (S2)

7. Press button Run deconvolution to run the procedure
8. Output signal will be shown in (C2) field
9. After deconvolution user is asked whether deconvoluted signal is to be taken as the input

one when switching to the Baseline correction/Butterworth option in the dialog box (if one
wants to use it please answer YES)

10. Characterization of soil layers is not memorized (!); one may select all fields of the grid and
copy it to the Excel sheet for later use; the inverse action (copying whole data set from
Excel sheet to the grid) is possible

Window 5-12
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5.4 Absorbing boundaries

Viscous dampers can be generated at the macromodeling or FE level. In the 2D applications
dampers are generated on selected subdomain or continuum finite element edges while in the
3D on faces.

Window 5-13: Viscous damper:On Subdomain edges

ZSoil®

A new 2D viscous damper macro-element(s) is(are) created on selected subdomain edge(s).

Remarks:
1. This macro-element is meaningful for Deformation or Deformation+Flow analyses when

running Transient dynamics driver
2. Viscous damper elements will be created on edges of the mesh of continuum elements once

the virtual and then the real mesh in the continuum subdomain is created
3. Any mesh refinement in the adjacent continuum automatically enforces mesh refinement

in the damper macro-element
4. Viscous dampers may inherit material data from adjacent continuum elements; this setting

can be made at the material level
Window 5-13
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Window 5-14: Viscous damper:On Subdomain faces

ZSoil®

A new 3D viscous damper macro-element(s) is(are) created by selecting face(s) in the existing
continuum 3D subdomains. See remarks given in Win.(5-13).

Window 5-14
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5.5 DRM modeling components

The obligatory components for runing DRM models are given in the following subsections.
However, it can be very useful for the user to study the dedicated tutorial on DRM modeling
included in the Tutorials manual.

5.5.1 Setting boundary and external layers in the preprocessor

Setting the external and boundary layers for DRM models can be made exclusively at the FE
level through the menu FE model/DRM domains/....

Window 5-15: DRM domains:Create: Exterior domain on element(s)

ZSoil®

This option allows the user to define the exterior domain in Domain Reduction Method
(DRM) for the set of selected continuum elements. This domain must not overlap with the
boundary DRM layer.

Exterior domain

Viscous dampers Viscous dampers

Structure

Remarks:

1. On the external edges/faces viscous dampers should be generated to avoid spurious reflec-
tions from finite boundaries

Window 5-15
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Window 5-16: DRM domains:Create: Boundary domain on element(s)

ZSoil®

This option allows the user to define the boundary layer of elements in Domain Reduction
Method (DRM) for the set of selected continuum elements. This domain must not overlap
with the exterior DRM layer.

Structure

Boundary layer

Interior domain

Exterior domain

Remarks:

1. The interior domain is detected automaticaly once the boundary and exterior domains are
selected

2. In the boundary domain continuum must behave in the elastic manner; this is enforced by
the calculation module in an automatic manner for any constitutive model for continuum

Window 5-16

5.5.2 Running DRM models with preprocessed free field motion

To run the DRM models we need to define, in the FE mesh, the nonoverlaping external and
boundary layers of continuum elements and to select the preprocessed (already computed)
transient dynamic project that will represent the motion of a simplified model. In most of the
applications this simplified model reduces to the shear layer model. It is important that any
nodal point in the boundary layer must have its projection on the mesh of a simplified model.
Browsing the project for a simplified model can be made at the dialog box for definition of

drivers (Control/Analysis and drivers/ Free field motion [ ] ). To perform this

operation one has to activate the flag ⊠ Domain Reduction for transient dynamics first

and then browse the free field motion project by pressing button Browse .
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5.6 Initial conditions

The initial conditions may consist of initial displacements/velocities and initial pore pressures
in dynamic consolidation problems.

Window 5-17: Initial displacement/velocity:Create on node

ZSoil®

Using this option one may define the initial displacement and/or velocity on a single picked
nodal point or set of selected nodal points.

Remarks:

1. This initial condition is meaningful only for dynamic driver which can be run in Deformation
or Deformation+Flow mode

2. The existence function is needed to handle the case when dynamic driver is run after Driven
load driver(s); in such case the initial displacement is understood as an increment of the
displacement by which the structure will be excited

3. The applied initial condition may have a label

Window 5-17
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Window 5-18: Initial displacement/velocity:Create on element node

ZSoil®

This option is equivalent to the one described in Window 5-17 but in this case the initial
condition is applied to a single picked element node. This way in case when at a given
geometrical point few nodes appear (due to contact interface for instance) one may apply
the initial condition to the proper node.

Window 5-18

5.7 Boundary conditions

5.7.1 Solid BC

Window 5-19: Solid BC:Create:On node

ZSoil®

Using this option one may fix the translational or rotational degrees of freedom at a single
picked node or group of selected nodes (if current selection list for nodes is not empty).

The dialog box used for setting these conditions is shown in figure below.

A1

A2

B3

C

Meaningful DOFs
for  2D  case

D2D1

Remarks:

1. Solid BC may be set in the local coordinate system
2. Nodes can be fixed at a certain time period and then relaxed according to the applied

existence function
3. For dynamic driver one may impose displacements, velocities or accelerations at fixed nodes

(corresponding displacements are integrated via time integration schemes: Newmark or
HHT)

4. For dynamic drivers imposed velocity/acceleration BC has a higher priority if both displace-
ment and velocity/acceleration BC are simultaneously active

5. To switch from rigid to viscous boundary user may define an unloading function for relaxed
translational degree of freedom ; this allows to deactivate the fixities but maintain the
static reactions that will preserve static equilibrium

Window 5-19
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5.7.2 Periodic BC

Window 5-20: Periodic BC:Create:2 nodes

ZSoil®

This option allows to tie selected degrees of freedom at two picked nodal points. It may
concern any type of the degree of freedom (displacement, pressure, temperature, humidity).
It is mainly used in dynamic applications to simulate motion of shear layer. The dialog box
used for setting these conditions is shown in the figure below.

P1 P2
DOF’s to be tied

Remarks:

1. The tying can be made only in the global coordinate system
2. This option does not apply to the fixed degree of freedom
3. Each degree of freedom can be tied according to the declared existence function

Window 5-20
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Window 5-21: Periodic BC:Create:Nodes & plane

ZSoil®

This option allows to tie selected degrees of freedom at the two opposite boundaries located
symmetrically with respect to the indicated auxiliary plane. This option helps to generate
this type of the boundary conditions for large computational models. The dialog box used
for setting these conditions is shown in the figure below.

Symmetry plane

Selected nodes

DOF’s to be tied

Remarks:

1. The tying can be made only in the global coordinate system
2. This option does not apply to the fixed degree of freedom
3. Each degree of freedom can be tied according to the declared existence function

Window 5-21
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Chapter 6

BENCHMARKS

6.1 Eigenvalues and eigenmodes

6.1.1 Natural vibrations of cantilever beam

ωn = (anL)
2

√
EJ

mL4
(6.1)

where an is a solution of the transcendental equation and m = ρ A (A is a cross section
area)

1 + cos(anL) cosh(anL) = 0 (6.2)

ϕn(x) = A1

[
sin(an x)− sinh(anx) +

sin(anL) + sinh(anL)

cos(anL) + cosh(anL)
(cosh(anx)− cos(anx))

]
(6.3)

In this benchmark the analyzed cantilever beam (see Fig.6.1) of length L = 4 m has a
rectangular cross section with dimensions b = 1.0 m, h = 0.1 m. It is discretized with 36
elements along the L dimension assuming that the mass matrix is lumped. All translational
and rotational DOFs are fixed along edge 1-2 (see Fig.6.1). Mass filtering is activated with the
only active direction set along global Y axis to consider bending modes only. The material
properties are E = 20000000 kN/m2, ν = 0.0, γ = 24.5166 kN/m3 and corresponding
ρ = 2500 kg/m3. Simulations were carried out using beam, shell and continuum elements.

6.1.1.1 Simulations using 2-node linear beam elements

File:
cantilever-beam-vibrations.inp

n 1 2 3 4 5
ωn (analytical) 17.94 112.44 314.87 616.97 1019.90
ωn (computed) 17.93 112.20 313.48 612.58 1009.20
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Figure 6.1: Cantilever beam
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Figure 6.2: Shapes of natural vibrations of cantilever beam for first 5 frequencies
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6.1.1.2 Simulations using quadrilateral 4-node shell elements

File:
cantilever-shell-vibrations.inp

In this model rotational DOFs along edges 1-2 and 3-4 along global X and Y axes are fixed
to enforce cylindrical bending mode only.

Results:

n 1 2 3
ωn (analytical) 17.94 112.44 314.87 616.97 1019.90
ωn (computed) 17.93 112.20 313.48 612.58 1009.20

6.1.1.3 Simulations using quadrilateral 4-node continuum elements

Files:
cantilever-continuum-2D-vibrations.inp
cantilever-continuum-2D-vibrations-dense.inp

The cantilever beam is discretized with 36x2 and then 72x2 elements (2 elements across the
thickness). The eigenvalue problem is solved using standard fully intergated Q4 elements,
Q4-BBAR, Q4-EAS (2 enhanced modes for normal strains only) and Q4-EAS elements with
enhanced shear/bending behavior (using Continuum for structures instead of Continuum
option at the material level). Switch from BBAR to EAS or standard fully integrated elements
can be made under menu Control/Finite elements. To enforce pure cylindrical bending
mode all translational DOFs in global Z direction along edges 1-2 and 3-4 are fixed.

Results:

n 1 2 3 4 5
ωn (analytical) 17.94 112.44 314.87 616.97 1019.90
ωn (computed Q4-EAS-enhanced)(36x2) 17.93 112.23 313.73 613.49 1011.59
ωn (computed Q4-EAS-enhanced (72x2) 17.94 112.25 313.62 612.69 1008.88
ωn (computed Q4-BBAR)(36x2) 21.91 136.99 382.50 746.71 1228.61
ωn (computed Q4-BBAR)(72x2) 18.20 113.88 318.15 621.48 1023.21
ωn (computed Q4-EAS)(36x2) 22.80 142.58 397.99 776.64 1277.17
ωn (computed Q4-EAS)(72x2) 19.27 120.57 336.75 657.53 1081.99
ωn (computed Q4-standard)(36x2) 22.80 142.58 397.99 776.64 1277.17
ωn (computed Q4-standard (72x2) 19.27 120.57 336.75 657.53 1081.99

6.1.1.4 Simulations using brick 8-node continuum elements

The cantilever beam is discretized 36x2x1 and then 72x2x1 elements. The eigenvalue prob-
lem is solved once using standard B8-BBAR elements and B8-EAS elements with enhanced
shear/bending behavior (using option Continnum for structures) File: cantilever-continuum-
3D-vibrations.inp

Results:

ZSoil® 100101 report 71



CHAPTER 6. BENCHMARKS

n 1 2 3 4 5
ωn (analytical) 17.94 112.44 314.87 616.97 1019.90
ωn (computed B8-EAS-enhanced)(36x2) 17.93 112.23 313.73 613.49 1011.59
ωn (computed B8-EAS-enhanced (72x2) 17.94 112.25 313.62 612.69 1008.88
ωn (computed B8-BBAR)(36x2) 22.21 138.88 387.73 756.83 1245.04
ωn (computed B8-BBAR)(72x2) 18.56 116.15 324.47 633.74 1043.21
ωn (computed B8-EAS)(36x2) 22.80 142.58 397.99 776.64 1277.17
ωn (computed B8-EAS)(72x2) 19.27 120.57 336.75 657.53 1081.99
ωn (computed B8-standard)(36x2) 22.80 142.58 397.99 776.64 1277.17
ωn (computed B8-standard (72x2) 19.27 120.57 336.75 657.53 1081.99

6.1.2 Natural vibrations of a bar

Analytical solution:

ωn =
2n− 1

2
π

√
EA

mL2
(6.4)

ϕn(x) = A1 sin

(
2n− 1

2
π
x

L

)
(6.5)

The analyzed bar has length L = 4 m and is discretized with 36 linear elements assuming
that the mass matrix is lumped.

6.1.2.1 Simulations using truss elements

File: truss-vibrations.inp, truss-vibrations-add-ele-mass, truss-vibrations-add-node-
mass.inp

In the first data file mass matrix is generated from given mass density specified at the material
level (ρ = 2500 [kg/m3]) while in the second and third data files mass matrix is generated
from added masses defined via mass distributed along the element (ρ∗ = 2500 ∗ 0.1 = 250

[kg/m] ) and nodal masses (at middle nodes madd = 250 ∗ 4

36
[kg] = 27.778 [kg] while at

the boundary nodes madd =
1

2
250 ∗ 4

36
[kg] = 13.889 [kg])

Material Model Data group Properties Unit Value
1 truss Elastic Elastic E [kN/m2] 20000000

Density γ [kN/m3] 24.5166
Density ρ [kg/m3] 2500

Results:

n 1 2 3 4 5
ωn (analytical) 1110.72 3332.16 5553.60 7775.05 9996.49
ωn (computed) 1110.63 3329.78 5542.59 7744.86 9932.38

72 ZSoil® 100101 report



6.1. EIGENVALUES AND EIGENMODES

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4
X [m]

A
 

Mode-1
Mode-2
Mode-3
Mode-4
Mode-5
Mode-1 (analytical)
Mode-2 (analytical)
Mode-3 (analytical)
Mode-4 (analytical)
Mode-5 (analytical)

Figure 6.3: Shapes of natural vibrations for first 5 frequencies

6.1.2.2 Simulations using linear 2-node beam elements

Files:
beam-vibrations.inp
beam-vibrations-add-ele-mass.inp
beam-vibrations-add-node-mass.inp
beam-vibrations-mass-filtering.inp
beam-axial-vibrations-mass-filtering-rotated.inp

In the first data file mass matrix is generated from given mass density specified at the material
level (ρ = 2500 [kg/m3]) while in the second and third data files mass matrix is generated
from added masses defined via mass distributed along the element (ρ∗ = 2500 ∗ 0.1 = 250

[kg/m] ) and nodal masses (at middle nodes madd = 250 ∗ 4

36
[kg] = 27.778 [kg] while at

the boundary nodes madd =
1

2
250∗ 4

36
[kg] = 13.889 [kg]). In the fourth data file all fixities

at internal nodes are cancelled and mass filtering is activated with the only active direction
set along Y axis. The fifth data file is equivalent to the first one but whole mesh is rotated
by 30 degrees and mass filtering is defined at the local rotated coordinate system.

n 1 2 3 4 5
ωn (analytical) 1110.72 3332.16 5553.60 7775.05 9996.49
ωn (computed) 1110.63 3329.78 5542.59 7744.86 9932.38

6.1.2.3 Simulations using 2D 4-node continuum elements

Files:
continuum-2D-axial-vibrations.inp
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continuum-2D-axial-vibrations-mass-filtering.inp

The first data set consists of a column of 36 Q4 elements with fixed all DOFs in the global X
direction. In the second data file we apply periodic boundary conditions (this option is avail-
able under boundary conditions menu in the preprocessor) that help to enforce displacement
compatibility (ux and uy) for pairs of nodes placed on both vertical walls of the domain and,
in addition, mass filtering is activated with the only active direction set along global Y axis.

n 1 2 3 4 5
ωn (analytical) 1110.72 3332.16 5553.60 7775.05 9996.49
ωn (computed) 1110.63 3329.78 5542.59 7744.86 9932.38

6.1.2.4 Simulations using 3D 8-node continuum elements

File: continuum-3D-axial-vibrations.inp

n 1 2 3 4 5
ωn (analytical) 1110.72 3332.16 5553.60 7775.05 9996.49
ωn (computed) 1110.63 3329.78 5542.59 7744.86 9932.38

6.1.2.5 Simulations using shell elements

File: shell-axial-vibrations.inp

n 1 2 3 4 5
ωn (analytical) 1110.72 3332.16 5553.60 7775.05 9996.49
ωn (computed) 1110.63 3329.78 5542.59 7744.86 9932.38

6.1.3 Natural vibrations of shear layer

Files:
shear-layer-64.inp

The analytical solution for eigenfrequencies for a shear layer resting on a rigid base is as
follows

ωn =
(2n− 1) π

2

vs
H

(6.6)

In the above formula the depth of the layer is denoted by H and shear wave velocity by
vs. The depth of the model is assumed H = 16 m while width B = 0.5 m (although it
does not play any role). The layer is discretized along the depth with 64 plane strain Q4
elements (1 element in the horizontal direction) and 2 nodes, at the base, are fully fixed.
To cancel vertical dilatational eigenmodes the periodic boundary conditions are enforced
(ux(x = 0) = ux(x = B), uy(x = 0) = uy(x = B)). The set of material properties is given
in the following table.
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Material Model Data group Properties Unit Value
1 truss Elastic Elastic E [kN/m2] 20000000

Density γ [kN/m3] 19.6133
Density ρ [kg/m3] 2000

The shear wave velocity is computed using the formula

cs =

√
G

ρ
(6.7)

and it yields vs = 204.145 m/s in the considered case.

The comparizon of analytical and computed first 8 eigenfrequencies is summarized in the
table below

n 1 2 3 4 5 6 7 8

ωn (analytical) 20.05 60.14 100.23 140.32 180.41 220.50 260.59 300.68

ωn (computed) 20.04 60.11 100.14 140.11 179.99 219.77 259.41 298.90

6.2 Baseline correction and Butterworth filtering of earthquake records

Files:
DYN-TR-BF-BASELINE-Layer-3m-no-damp-LomaPrieta,
DYN-TR-Layer-3m-no-damp-LomaPrieta

A dynamic time history analysis of 3m high soil-column, subject to Loma Prieta earthquake (Loma-
Prieta 18.10.1989, Station Corralitos) is considered in this section. The effect of baseline correction
procedure and Butterworth filters will be presented. Duration of the earthquake record takes 16.9
s and it is digitized at every 0.02s. The soil-column is discretized by 3 quadrilateral elements (3
× 1m) representing an elastic medium characterized by E = 512000 kPa, ν = 0.22625, γ = 20
kN/m3 (resulting shear wave velocity is 320 m/s). To trace dynamic response of the system the
time step ∆t = 0.01 s is used and case of zero damping is considered (HHT method with α = −0.3
is used). The accelaration record is applied as a boundary condition to the pair of nodes at the
bottom, while remaining nodes placed along vertical walls are constrained using periodic BC in
order to represent shear layer motion. The data setup is shown in the figure below. To cancel body
forces the body force mutiplier (defined at the material level (under Unit weights)) is set to zero.

6.3 1D dynamic consolidation

Files:
Column-1D-Pi1 01 Pi2 01-dyn-ex.inp,
Column-1D-Pi1 01 Pi2 01-dyn.inp,
Column-1D-Pi1 01 Pi2 1-dyn-ex.inp,
Column-1D-Pi1 01 Pi2 1-dyn.inp,
Column-1D-Pi1 10 Pi2 01-dyn-ex.inp,
Column-1D-Pi1 10 Pi2 01-dyn.inp,
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u uuA=uB

A BA B

( )ax(t)

Figure 6.4: Geometry nad BC for 1D time history analysis of shallow shear layer

Column-1D-Pi1 1 Pi2 01-dyn-ex.inp,
Column-1D-Pi1 1 Pi2 01-dyn.inp,
Column-1D-Pi1 1 Pi2 1-dyn-ex.inp,
Column-1D-Pi1 1 Pi2 1-dyn.inp

A 10m high soil-column subject to a harmonic surface load q = qo sin(ω t) (qo = 1kN/m2) is
considered in this section. The soil-column is discretized with 400 quadrilateral elements (400 ×
1). Nodes at the base are fully fixed while nodes along vertical walls can freely move in the vertical
direction only. At the top of the column pressure boundary condition p = 0 is assumed. Solution of
this problem, although in the frequency domain, can be found in the textbook by Zienkiewicz el.al
[13] and PhD thesis by Kantoe [5].

10
m

q sin(t)

Ux=0

Ux=Uy=0

p=0

Figure 6.5: Geometry of 1D consolidation test

To achieve steady state harmonic solution more than 20 cycles of the loading are applied. Solution
of this problem depends on some nondimensionless parametrs Π1 and Π2 defined as follows

Π1 =
2

βπ

k To

g T̂ 2

Π2 = π2

(
T̂

To

)2
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The natural period of vibration T̂ and dilataional wave velocity vc are defined as

T̂ =
2H

vc

vc =

√
Eoed +KF /n

ρ

Parameter β = ρF /ρ, g is the gravitational acceleration, KF is the fluid bulk modulus, k is
permeability of soil, To is the period of excitation and oedometric stiffness modulus Eoed can be
computed using the expression

Eoed =
E(1− ν)

(1− 2ν)(1 + ν)

The material data used in the simulation (see Kantoe [4]) is given in the following table

Material Model Data group Properties Unit Value

1 Elastic Elastic E [kN/m2] 67500

ν [-] 0.25
Density γ [kN/m3] 26.1511

eo [-] 0.5
Flow KF [kN/m2] 973000

k [m/s] depends on Π2

Sr [-] 1.0
α [m−1] 2.0
α̃ [-] 1.0
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Figure 6.6: Excess pore pressure distribution for Π1 = 0.1 and Π2 = 0.1

Five tests were carried out (see table below) for 5 different pairs of Π1 and Π2. For each pair of

Π1 and Π2 a corresponding ω (for given ω To =
2π

ω
) and k parameters were derived using the

aforementioned expressions. The time step for dynamic driver was assumed as ∆t = To/40.

No Π1 Π2 k [m/s] ω [rad/s] ∆t
1 0.1 0.1 0.001033711674 31.62277660 0.00496729
2 0.1 1.0 0.003268883333 100 0.0015708
3 1.0 1.0 0.032688833330 100 0.0015708
4 1.0 0.1 0.01033711674 31.62277660 0.00496729
5 10.0 0.1 0.1033711674 31.62277660 0.00496729

Table 6.4: k and ω values

In all cases the standard HHT integration scheme (α = −0.3, β = 0.4225, γ = 0.8) was used and
integration coefficient for the pore pressures was assumed θ = 0.5. In the following results presence
of the inertial term in Darcy’s law was tested. Results denoted by HHT+ correspond to the case
of active inertial term. In the following five figures distributions of the excess pore pressure are
presented.
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Figure 6.7: Excess pore pressure distribution for Π1 = 0.1 and Π2 = 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
p/q

y/
H

PI1=1.0, PI2=1.0 (closed form)

Z_SOIL HHT(+)

Z_SOIL HHT

Figure 6.8: Excess pore pressure distribution for Π1 = 1.0 and Π2 = 1.0
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Figure 6.9: Excess pore pressure distribution for Π1 = 1.0 and Π2 = 0.1
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Figure 6.10: Excess pore pressure distribution for Π1 = 10 and Π2 = 0.1
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6.4 Absorbing boundaries

6.4.1 Absorbing boundaries for single-phase media

Files:
1D-transmitting-boundary-no-dashpots-40-Q4.inp
1D-transmitting-boundary-with-dashpots-40-Q4.inp

A 10m long bar, discretized with aid of 40 plane strain quadrilateral elements, is subject to an
imposed vertical (üy(t)) and horizontal (üx(t)) acceleration applied to nodal points A and B. The
geometry, boundary conditions and load time function, common for both imposed accelerations, are
shown in the figure given below. To avoid shear and dilatational waves reflection from the bottom
boundary, Lysmer type viscous dashpot is added along the edge C-D.

1m
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A B

C D
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ax(t)
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), 

ay
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Figure 6.11: Soil layer subject to excitation applied to the boundary A-B

Material properties, common for the continuum and viscous damper, are given in the table 6.5
(note that one may declare automatic inheritance of viscous damper properties from the adjacent
continuum element).

Material Model Data group Properties Unit Value

1 Continuum Elastic Elastic E [kN/m2] 100000

ν [-] 0.25

Density γ [kN/m3] 9.80665
Density ρ [kg/m3] 1000

Table 6.5: Material properties

The above values yield: G = 40000 kPa, λ = 40000 kPa, shear wave velocity cs = 200 m/s and
dilatational wave velocity cp = 346.41 m/s. It means that the horizontal velocity at points C,D

should vanish after time t = 0.4+
10

200
= 0.45s while the vertical one after time t = 0.4+

10

346.41
=

0.429. In the following figures we can see the vertical and horizontal velocity time history at node
C.
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Figure 6.12: Solid velocity vx(t) at point C
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Figure 6.13: Solid velocity vx(t) (zoom) at point C
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Figure 6.14: Solid velocity vy(t) at point C
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Figure 6.15: Solid velocity vy(t) (zoom) at point C
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6.4.2 Absorbing boundaries for dynamic consolidation

Files:
Semi Inf Col 300m.inp,
Semi Inf Col 100m.inp,
Semi Inf Col 100m-paraxial.inp

A one-dimensional test problem of a soil column subject to Heaviside type surface load 1000 kN/m2,
applied to the top boundary, is analyzed (see Modaressi [5]). The material properties used in this
test are given in the table 6.6.

Material Model Data group Properties Unit Value

1 Continuum Elastic Elastic E [kN/m2] 400000

ν [-] 0.3

Density γD [kN/m3] 12.9675
eo [-] 0.423856

Flow KF [kN/m2] 1000
kx = ky [m/s] 10−7

Sr [-] 1.0
α [m−1] 2.0

α̃ [-] 1.0

Table 6.6: Material properties

To test the paraxial approach three models were constructed (see figure below). The first one,
300m long, the second, 100m long without paraxial element and the third one, again 100 m long,
with paraxial element. The first model plays a role of a reference one as the duration time of the
analysis is equal 0.35s. Within this time period signal does not reach the bottom boundary. The
major difference among the models appear in the setting the boundary conditions. In the first model
fixities at the bottom edge remain permenantly active while in the 100m long models they become
inactive just after 1s. The vertical fixities are released with an unloading function that is equal to
1.0 (all the time). This means that fixities are inactive but reaction forces remain active. In the
third model paraxial element is added just after time instance t=1s.
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Figure 6.16: Soil layer subject to vertical surface load
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Figure 6.17: Pore pressure for semi-infinite column
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Figure 6.18: Vertical displacement for semi-infinite column
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Figure 6.19: Pore pressure for finite column without paraxial elements
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Figure 6.20: Vertical displacement for finite column without paraxial elements

ZSoil® 100101 report 87



CHAPTER 6. BENCHMARKS

0

1

2

3

4

5

6

7

8

0 0.1 0.2 0.3 0.4
t [s]

p 
[k

Pa
] 25m

50m
100m

Figure 6.21: Pore pressure for finite column with paraxial elements
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Figure 6.22: Vertical displacement for finite column with paraxial elements
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6.5 Soil-structure interaction via DRM method

6.5.1 Beam-subsoil interaction via DRM method, 1D example

Files:
1D-column.inp,
1D-column-plus-beam.inp,
1D-column-plus-mass-DRM-FF-full.inp,
1D-column-plus-mass-DRM-FF-shl.inp

A 1D column-subsoil interaction problem is analyzed here using the Domain Reduction Method [9].
Model consists of 13m deep elastic soil layer and 4m long elastic beam. On top of the beam an extra
mass M = 2000 kg is added. Thirteen plane strain quadrilateral elements are used to discretize the
subsoil while six elements to discretize the beam. The system is subject to base excitation defined
in terms of imposed harmonic horizontal displacements with unit amplitude and period T = 1 s.
System is excited in the first 6s while the whole time history analysis takes 12s. As far as boundary
conditions are concerned, all degrees of freedom on opposite vertical walls are tied using Periodic

BC option.

To test the approach two different DRM models are considered. In the first one the free field motion
is taken from the full model including beam and added mass (see fig.(6.23)) and in the second one
(see fig.(6.24)) a free field motion, resulting from shear layer model, is taken as a background
model. The simplified shear layer and full models, with harmonic excitation applied at the base,
are included in the 1D-column.inp and 1D-column-plus-beam.inp files respectively. It has to be
emphasized that in the external domain we seek for the residual motion and hence at the base of
both DRM models imposed displacement must be equal to zero during the analysis. The standard
validation procedure for DRM method is to substitute as a free-field the motion obtained from full
model that includes both subsoil and the structure. In that case the residual field should vanish to
zero.

Results of these simulations, given in form of displacement time histories at selected points, are
shown in the following figures.

Material properties for continuum and beam are given in Table 6.7.

Material Model Data group Properties Unit Value

1 Continuum Elastic Elastic E [kN/m2] 48600

ν [-] 0.35

Density γD [kN/m3] 17.652
eo [-] 0.0

2 Beam Elastic Elastic E [kN/m2] 20000000
ν [-] 0.2

Density γ [kN/m3] 0.0
Geometry Rectangular

b [m] 1.0
h [m] 1.0

Table 6.7: Material properties
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Boundary layer
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M=2000 kg

Ux(t)

Free field:  uo(t), uo(t), uo(t)
. ..

Figure 6.23: DRM model 1: free field motion is taken from full model (1D-column-plus-mass-
DRM-FF-full.inp)
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Figure 6.24: DRM model 1: free field motion is taken from simple model (1D-column-plus-
mass-DRM-FF-shl.inp)
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Figure 6.25: ux(t) at y=17m (free field motion from full model)
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Figure 6.26: ux(t) at y=17m (free field motion from simple model)
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Ground surface (y=13m)
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Figure 6.27: ux(t) at y=13m (free field motion from full model)
Ground surface (y=13m)

-3

-2

-1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12
t [s]

U
x 

[m
] Full model

DRM-FF from simple
model

Figure 6.28: ux(t) at y=13m (free field motion from simple model)
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3m below ground surface (y=10m)
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Figure 6.29: ux(t) at y=10m (free field motion from full model)
3m below ground surface (y=10m)
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Figure 6.30: ux(t) at y=10m (free field motion from simple model)
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Exterior node of the boundary layer (y=6m)
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Figure 6.31: ux(t) at y=6m (external node of boundary layer)(free field motion from full
model)
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Figure 6.32: ux(t) at y=6m (external node of boundary layer)(free field motion from simple
model)
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Figure 6.33: ux(t) at y=0m (base node)(free field motion from full model)
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Figure 6.34: ux(t) at y=0m (base node)(free field motion from simple model)
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6.5.2 Beam-subsoil interaction via DRM method, 2D example

Files:
SOIL-COLUMN.inp
FF-SHL.inp,
DRM-S-FF-L.inp,
DRM-S-FF-SHL.inp,
DRM-S-V-WALL-FF-L.inp,
DRM-S-V-WALL-FF-SHL.inp,

A two-dimensional column-subsoil interaction problem is analyzed here using the DRM method.
Model consists of 30m deep elastic soil layer, and 10m long elastic beam, subject to harmonic
(f = 2 Hz) base excitation defined in terms of imposed horizontal displacements.

To obtain a reference solution a large two-dimensional model (3600m × 30m) (SOIL-COLUMN.inp)
was solved first assuming periodic boundary conditions at left and right vertical boundaries. The
initial state was generated first for the box-type BC. In the later stage horizontal fixities, at both
vertical walls, were released, but corresponding static reactions were left using unloading procedure
for BC (unloading function associated with the horizontal fixities is equal to 1.0 for any time
instance). Duration of time history analysis was 5s in the period t = 1..6 s and time step ∆t =0.01s
was selected. The setup of this model is shown in fig.(6.35).

Ux(t)

Initial state

Transient dynamics

A B

Periodic BC: uA = uB

3600 m

30m

10m

Figure 6.35: Soil-beam interaction problem (full model)

Tu test the approach two different DRM models were considered. In the first one (DRM-1) the
boundary and external layer take U-letter form (see fig.(6.36)) while in the second one (DRM-2)
the boundary and external layers are placed exclusively along vertical walls (see fig.(6.37)). In both
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cases free field motions taken from the full (SOIL-COLUMN.inp) and simplified shear layer (FF-
SHL.inp) models were considered. In the latter case the shear layer domain must fully cover (in
the geometrical sense) the domain of the DRM finite element models. In addition in DRM models
viscous dampers were added along the vertical edges of external domain (as the model is extended
up to the rigid base). As in the external domain we seek for the residual motion, in the DRM-1
model, during dynamic analysis, imposed displacements, at base nodes that belong to the external
domain, must be equal to zero. Contray to DRM-1, in the DRM-2 model at all base nodes, that
do not belong to the external domain, we have to apply the nonzero harmonic excitation with 2Hz
frequency. Results of these simulations, given in form of horizontal displacement time histories, at
certain points, are shown in the following figures. One may notice very little deviations in time
histories produced by full and DRM models. This deviation is caused by the fact that presence of
the beam, even in such a large model, generates deviation from pure shear layer motion at nodes
placed far from the structure (see fig.(6.53)).

Material properties for continuum and beam are given in Table 6.8. Properties for viscous dashpots
used in the DRM models are the same as for the continuum.

Material Model Data group Properties Unit Value

1 Continuum Elastic Elastic E [kN/m2] 192000

ν [-] 0.2

Density γD [kN/m3] 19.6133
eo [-] 0.0

2 Beam Elastic Elastic E [kN/m2] 20000000
ν [-] 0.2

Density γ [kN/m3] 24.5166
Geometry Rectangular

b [m] 1.0
h [m] 1.0

Table 6.8: Material properties
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Initial state
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viscous dampers

Boundary layer

External layer

Ux=Uy=0

Transient dynamics

Figure 6.36: DRM-1 model: continuos boundary and external layer
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viscous dampers

Ux=Uy=0

Transient dynamics

Boundary layer
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Figure 6.37: DRM-2 model: boundary and external layers placed along vertical walls
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Figure 6.38: ux(t) at y=40m (top of the beam)(free field motion from full model)
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Figure 6.39: ux(t) at y=0m (top of the beam)(free field motion from simple model)

Top of beam (y=40m)

-10
-8
-6
-4
-2
0
2
4
6
8

10

0 1 2 3 4 5
t [s]

U
x 

[m
] DRM-2-FF from simple

model
DRM-1-FF from simple
model

Figure 6.40: ux(t) at y=0m (top of the beam)(free field motion from simple model)
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Ground surface (y=30m)
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Figure 6.41: ux(t) at y=30m (ground surface)(free field motion from full model)
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Figure 6.42: ux(t) at y=30m (ground surface)(free field motion from simple model)
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Figure 6.43: ux(t) at y=30m (ground surface)(free field motion from simple model)
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6m below ground surface (y=24m)
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Figure 6.44: ux(t) at y=24m (free field motion from full model)
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Figure 6.45: ux(t) at y=24m (free field motion from simple model)
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Figure 6.46: ux(t) at y=24m (free field motion from simple model)
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12m below ground surface (y=18m)
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Figure 6.47: ux(t) at y=18m (free field motion from full model)
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Figure 6.48: ux(t) at y=18m (free field motion from simple model)
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Figure 6.49: ux(t) at y=18m (free field motion from simple model)
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24m below ground surface (y=6m)
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Figure 6.50: ux(t) at y=6m (free field motion from full model)
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Figure 6.51: ux(t) at y=6m (free field motion from simple model)
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Figure 6.52: ux(t) at y=6m (free field motion from simple model)
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Figure 6.53: ux(t) time histories for full model (at x = 1800m) and shear layer at y = 30 m
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6.6 Application of densification model

6.6.1 Cyclic simple shear test with strain control

File:simple-shear-cyclic.inp

In this example we will simulate cyclic simple shear test under drained conditions (mode : Defor-
mation). The displacement boundary conditions are as follows uCx = uDx = 0, uCy = uDy = 0,

uAx = uBx = 10−3 sin(2 ∗pi ∗ t) and an additional periodic boundary condition is assumed uAy = uBy
(see Fig.(6.54)). The imposed horizontal displacement (that yields the strain amplitude γo(t)) is
generated inside dialog box designed for load time functions where we can introduce the following
expression 10−3 sin(6.283185307179586∗ t) in time range 0..100s with step 0.25s. The meaningful

material data used in this simulation is set as follows: Eref
ur = 100000 kPa, νur = 0.25, σref = 100

kPa, σL = 5 kPa,m = 0.5, small strain option is inactive, eo = 0.5, ϕ = 30o, c = 0 kPa, shear
mechanism is inactive, Sawicki’s densification law is assumed with C1 = 8.7 ∗ 10−3, C2 = 2 ∗ 105,
an extended strain mapping is used (in this case accumulated strain will develop only in the vertical
direction). The constant time step is used in this simuation with ∆t = 0.025 s (10 strain increments
per 1/4 cycle).

A B

100 kPa

11m

={‐100,‐100,0,‐100}

1m
C D

Figure 6.54: Single element setup

The comparizon of the analytical solution by Sawicki (εv = eo C1 ln(1+C2 z)) and the numerical
one is shown in Fig.(6.55). In Fig.(6.56) we can take a look to the zoomed part of the analytical and
numerical solution. As we can see the analytical solution is cycling along the common compaction
curve.

ZSoil® 100101 report 105



CHAPTER 6. BENCHMARKS

0 5 10 15 20 25
z * 1.0e6

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

e
p
s-

V

ZSOIL
Theory

Figure 6.55: Evolution of volumetric strain with z parameter εv(z)
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Figure 6.56: Zoom of εv(z)

6.6.2 Static liquefaction problem

Files:
simple-shear-mono-undr-100kPa.inp,
simple-shear-mono-undr-200kPa.inp,
simple-shear-mono-undr-300kPa.inp,
simple-shear-mono-undr-100kPa-ex.inp,
simple-shear-mono-undr-200kPa-ex.inp,
simple-shear-mono-undr-300kPa-ex.inp
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In this example we will simulate monotonic simple shear test under undrained conditions (mode:
Deformation+Flow). The displacement boundary conditions are as follows uCx = uDx = 0, uCy =

uDy = 0, uAx = uBx = f(t) and an additional periodic boundary condition is assumed uAy = uBy (see
Fig.(6.54)). The imposed horizontal displacement is defined via load time function that consists
of 5 characteristic points {{0.0,0.0},{1.0,0.00001},{2.0,0.0001},{3.0,0.001},{4.0,0.01},{5.0,0.1}}.
The meaningful material data used in this simulation is set as follows: Eref

ur = 100000 kPa,
νur = 0.25, σref = 100 kPa, σL = 5 kPa,m = 0.5, small strain option is inactive, eo = 0.5,
ϕ = 30o, c = 0 kPa, shear mechanism is once active and then inactive, Sawicki’s densification
law is assumed with C1 = 8.7 ∗ 10−3, C2 = 2 ∗ 105, an extended strain mapping is used (in this
case accumulated strain will develop only in the vertical direction). In the time range t = 0..3 s
the time step ∆t = 0.025 s is used, and for the remaining period ∆t = 0.01 s was assumed. In
this case the undrained behavior is modeled by means of the Driven Load (undrained) driver. In
this case in group Flow the gravity term in Darcy law was canceled (to avoid pore pressure build
up due to fluid dead weight). This test is reproduced for three different initial confining stresses
100 kPa, 200 kPa and 300 kPa. As we can observe the descending branch of effective stress path
in p − q plane (see Fig.(6.57a,6.57a)), for model with inactive shear mechanism, folows the M-C
limit line while for model with the active shear mechanism one may observe existence of the phase
transition line below the M-C line. For simulations with shear mechanism active the Eref

50 = 33000
kPa secant reference Young moduli was assumed. The evolution of deviatoric stress q with respect
to the imposed shear strain is shown in Fig.(6.57c,6.57d).

6.6.3 Cyclic undrained triaxial test

Files:
triax-cyclic-undr-stress-ctrl-30kPa.inp,
triax-cyclic-undr-stress-ctrl-40kPa.inp,
triax-cyclic-undr-stress-ctrl-50kPa.inp

In this example we will simulate an axisymmetric cyclic undrained triaxial test (mode: Deforma-
tion+Flow) using Driven Load (undrained) driver., for three values of the deviatoric stress amplitude
30 kPaa, 40 kPa and 50 kPa. This test is stress controlled hence the displacement boundary con-
ditions are as follows uCx = 0, uCy = uDy = 0, uAx = (see Fig.(6.54)). Sample is consolidated up
to 100 kPa and then subject to cyclic vertical loading driven by the load time function defined
using the expression q sin(6.283185307179586 ∗ t), in time range 0..100s with step 0.25s (q is
the applied stress amplitude). The meaningful material data used in this simulation is as follows:

Eref
ur = 100000 kPa, νur = 0.25, σref = 100 kPa, σL = 5 kPa,m = 0.5, small strain option is

inactive, eo = 0.5, ϕ = 30o, c = 0 kPa, shear mechanism is inactive, Sawicki’s densification law
is assumed with C1 = 8.7 ∗ 10−3, C2 = 2 ∗ 105, an extended strain mapping is used. The cyclic
loading is run until failure state is achieved . Constant time step ∆t = 0.01 s is used (25 increments
per single 1/4 cycle). In this case the undrained behavior is modeled by means of the Driven Load
(undrained) driver. In this case in group Flow the gravity term in Darcy law was canceled (to avoid
pore pressure build up due to fluid dead weight) and water specific weight is set to very small value
(10−12) to cancel an additional body forces resulting from the water content.

The effective stress paths for three values of the applied vertical stress amplitude are shown in
Fig.(6.58a, 6.58b, 6.58c)).
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Figure 6.57: Static liquefaction problem
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Figure 6.58: Effective stress paths for cyclic undrained triaxial test
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6.6.4 Dynamic shear layer problem (dry medium)

Files:dns-shear-layer-dry-ext.inp, dns-shear-layer-dry-iso.inp

This benchmark is taken from paper by Sawicki [10]. It shows the effect of settlements of 15m
deep dry loose sand layer during shaking applied through the Seismic input option (shaking table
approach) in form of assumed accelerogram a(t) = 0.1 g sin(4 ∗ π t). Duration of the shaking
is taken as 15s with the time step ∆t = 0.01s. To model shear layer mesh consists of a single
column of Q4 elements (element size is taken as 1m) with periodic BC that ties both vertical and
horizontal translational degrees of freedom on both vertical walls of the domain (except the bottom
edge where standard fixities are applied).

The following data is used in this benchmark: H = 15 m, ρ = 1800 kg/m3, Kinsitu
o = 1, n = 0.4,

C1 = 8.7 ∗ 10−3, C2 = 2 ∗ 105, phi = 30o, c = 0 kPa, ν = 0.2, m = 0.5, σref = 100 kPa,

Eref
ur = 216053 kPa shear mechanism is inactive, small strain mode is inactive, accumulated strain

mapping is assumed in the extended form. This test is run for two strain mapping modes to show
spurious effects that can be generated when isotropic strain mapping is used. The ux(t) time
histories of the point on the ground surface are shown in Fig.6.59a, the settlements of the surface
are shown in Fig.6.59b while evolution of the mean stress at the bottom of the layer (last element)
are presented in Fig.6.59c. The last plot shows strong variation of the mean stress during shaking
that generates larger shear strain amplitudes and in consequence stronger densification. This process
becomes dominant once the reduction of the horizontal normal stress activates the MC criterion
that prevents further reduction of the mean stress. In the elastic case, as in the original Sawicki’s
model, at the end of shaking we could observe very high tensions in the horizontal direction. As we
can see the proposed anisotropic mapping eliminates this serious drawback. Sawicki reports 6mm
of settlement after 20 cycles (at t = 10s) while here we get about 4 mm. This difference is due to
simplified method of calculation of the settlement used by Sawicki.
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Figure 6.59: Cyclic undrained test
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6.6.5 Layer subject to San Fernando earthquake (dry medium)

Files:dns-ss-lay-15m-SanFernando-NW-drained-HSs.inp, dns-ss-lay-15m-SanFernando-NW-
drained-HS-Brick.inp

In this example a 15m deep loose sand layer is subject to the San Fernando earthquake 1971. The
acceleration time history is taken from the US data bank for Castaic Station NW. The aim of
this test is to show the evolution of settlements of the layer during shaking applied through the
Seismic input option (shaking table approach). Duration of the shaking is 30s, the appplied time
step is ∆t = 0.005s. The following data is used: H = 15 m, ρ = 1620 kg/m3, Kinsitu

o = 1,
n = 0.4 C1 = 8.7 ∗ 10−3, C2 = 2 ∗ 105, ϕ = 30o, c = 0 kPa, ν = 0.2, m = 0.5, σref = 100 kPa,

Eref
o = 240000 kPa, Eref

ur = 80000, γ0.7 = 0.0002 We assume that shear mechanism is inactive and
accumulated strain mapping is used in the extended form. The computed evolution of horizontal
displacements and settlements for both small strain approaches is shown in figures 6.60 and 6.61
with the final value of order 3.8cm. The HSs small strain approach yields much larger horizontal
residual deformations than the HS-Brick one.

Figure 6.60: Horizontal deformation time history at the top of the layer

112 ZSoil® 100101 report



6.6. APPLICATION OF DENSIFICATION MODEL

Figure 6.61: Settlements time history

6.6.6 Liquefaction of sand layer subject to San Fernando earthquake
(two-phase consolidation)

Files:dns-ss-lay-15m-SanFernando-NW-2phase-HSs.inp, dns-ss-lay-15m-SanFernando-NW-
2phase-HS-Brick.inp

The same example presented in the previous section for dry state is analyzed here in the two-phase
format assuming full saturation of sand layer. Same geometry and material data is used (k = 10−4

m/s). The pressure BC p = 0 at the top boundary is assumed. The resulting evolution of the
mean effective stress in 4 selected elements is plot in the figure shown below. The interesting
observation is such that the liquefaction is initiated in element 9 (about 2/3H from the top). Then
the liquefaction front starts moving upwards. Evolution of mean effective stress for the two small
strain approaches is shown in figures 6.62, 6.63.

Figure 6.62: Evolution of effective mean stress p′(t) in time (HSs-small strain approach)
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Figure 6.63: Evolution of effective mean stress p′(t) in time (HS-Brick strain approach)
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6.7 Baseline correction and Butterworth filtering

6.7.1 Example of baseline correction and Butterworth filtering

Files:DYN-TR-Layer-3m-NO-BASE-LINE.inp, DYN-TR-Layer-3m-WITH-BASE-LINE.inp

In this example a 3m deep soil layer is subject to the Loma Prieta earthquake (LomaPrieta-18-
10-1989-Station-Corralitos). Material data for this example is as follows: E = 512000 kPa, ν =
0.22625, γ = 20 kN/m3. HHT integration scheme is used with zero material damping and time
step ∆t = 0.01 s. Discretization and boundary conditions are shown in the figure below. Note
that the earthquake is applied through the imposed accelerations at two nodal points located at the
base. At other nodal points periodic boundary condition is defined to model shear layer problem.

Periodic BC
uA=uB

3

A B

3m

Imposed acceleration ax
1m at base

Computed horizontal displacement time history at top of the layer is shown in the next figure. One
may easily notice that baseline correction procedure applied to the signal removes characteristic
drift observed in u(t).
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Fourier amplitudes for unfiltered and filtered (using 10 Hz low pass Butterworth filter) Loma Prieta
record are shown in the next two figures.
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6.8 Linear deconvolution

6.8.1 Convolution analysis for undamped soil layer on rigid base

Files:
DYN-TR-Layer-3m-form-abs-no-damp-3ele.inp,
DYN-TR-Layer-3m-form-rel-no-damp-3ele.inp

The convolution analysis (transfer of the signal from base to the surface) of Loma Prieta seismic
acceleration record (LomaPrieta-18-10-1989-Station-Corralitos) for a 3m deep soil layer resting on
a rigid bedrock is the aim of this benchmark. The original signal is filtered with 10 Hz low pass
Butterworth filter and baseline corrected. The two ways of application of an earthquake to the
finite element model are analyzed. In the first model imposed accelerations are applied at two
nodes at the base (absolute format set at the level of boundary conditions) while in the second one
acceleration is applied as global to the whole structure (while bottom nodes remain fixed)(relative
format, set using Seismic input option). It should be mentioned that results of both models must
properly be analyzed because first model yields total accelerations at nodes while the second one
relative with respect to the rigid base. Comparizon that is made here refers to global accelerations.
Material data for this example is as follows: E = 525000 kPa, ν = 0.25, γ = 20 kN/m3. HHT
integration scheme is used with zero material damping and time step ∆t = 0.01 s. Discretization
and boundary conditions are shown in the figure below. At all nodes, except base ones, periodic
boundary condition is used to represent shear layer deformation mode.
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Periodic BC
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A B

3
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3m 3m
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Imposed acceleration ax at
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Shaking table with rigid base
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Absolute and relative rigid base models

Original signal and filtered, and baseline corrected, are shown in the next two figures.
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Comparizon of analytical and numerical solutions shows an excellent agreement.
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6.8.2 Deconvolution analysis for undamped soil layer on rigid base

Files:
DYN-TR-deconvolution-Layer-3m-form-abs-no-damp-3ele.inp,
DYN-TR-deconvolution-Layer-3m-form-rel-no-damp-3ele.inp

To verify procedure of deconvolution the original signal (LomaPrieta-18-10-1989-Station-Corralitos)
is filtered with 10 Hz low pass Butterworth filter and baseline corrected first, then deconvolution
procedure is run from Acceleration time history toolbox. Data set for deconvolution pro-
cedure is shown in the figure below (data in the second row corresponds to the bedrock, although
for rigid base model it is not meaningful).
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Data setup for deconvolution of Loma Prieta signal from surface to the base of FE model
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By applying the deconvoluted signal at the base we expect that the computed acceleration (at
surface) will fully be compatible with the original signal. In this benchmark a 3m deep soil layer
resting on a rigid bedrock is analyzed. The two ways of application of an earthquake to the finite
element model are analyzed. In the first model imposed accelerations are applied at two nodes
at the base (absolute format set at the level of boundary conditions) while in the second one
acceleration is applied as global to the whole structure (while bottom nodes remain fixed)(relative
format, set using Seismic input option). It should be mentioned that results of both models must
properly be analyzed because first model yields total accelerations at nodes while the second one
relative with respect to the rigid base. Comparizon that is made here refers to global accelerations.
Material data for this example is as follows: E = 525000 kPa, ν = 0.25, γ = 20 kN/m3. HHT
integration scheme is used with zero material damping and time step ∆t = 0.01 s. Discretization
and boundary conditions are shown in the figure below. At all nodes, except base ones, periodic
boundary condition is used to represent shear layer deformation mode.

ZSoil® 100101 report 121



CHAPTER 6. BENCHMARKS
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Absolute and relative rigid base models

Comparizon of analytical and numerical solutions shows an excellent agreement.
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6.8.3 Convolution analysis for damped soil layer on rigid base

Files:
DYN-TR-Layer-50m-form-abs-damp.inp,
DYN-TR-Layer-50m-form-rel-damp.inp

The convolution analysis (transfer of the signal from base to the surface) of Loma Prieta seismic
acceleration record (LomaPrieta-18-10-1989-Station-Corralitos) for a 50m deep soil layer resting
on a rigid bedrock is the aim of this benchmark. The original signal is filtered with 10 Hz low
pass Butterworth filter and baseline corrected. The two ways of application of an earthquake to
the finite element model are analyzed. In the first model imposed accelerations are applied at two
nodes at the base (absolute format set at the level of boundary conditions) while in the second one
acceleration is applied as global to the whole structure (while bottom nodes remain fixed)(relative
format, set using Seismic input option). It should be mentioned that results of both models must
properly be analyzed because first model yields total accelerations at nodes while the second one
relative with respect to the rigid base. Comparizon that is made here refers to total accelerations.
Material data for this example is as follows: E = 1250000 kPa, ν = 0.25, γ = 20 kN/m3, Rayleigh
damping parameters αo = 1.88496 and βo = 0.00397887. HHT integration scheme is used with
time step ∆t = 0.01 s. Discretization and boundary conditions are shown in the figure below. At all
nodes, except base ones, periodic boundary condition is used to represent shear layer deformation
mode.
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Periodic BC
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1m 1m

Imposed acceleration ax at
nodal points at base

Shaking table with rigid base
Nodes at base are fixed

Absolute and relative rigid base models
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Original signal and filtered, and baseline corrected, are shown in the next two figures.
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Comparizon of analytical and numerical solutions shows an excellent agreement.
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6.8.4 Deconvolution analysis for damped soil layer on rigid base

Files:
DYN-TR-DECONVOLUTION-Layer-50m-form-abs-damp.inp,
DYN-TR-DECONVOLUTION-Layer-50m-form-rel-damp.inp

To verify procedure of deconvolution for damped system the original signal (LomaPrieta-18-10-
1989-Station-Corralitos) is filtered with 10 Hz low pass Butterworth filter and baseline corrected
first, then deconvolution procedure is run from Acceleration time history toolbox.

One has to mention that in the considered case acceleration record shows significant nonzero values
from the very begining. It means that such a signal cannot be deconvoluted without any loss of
accuracy (so-called effect of initial transients) because shear wave velocity is bounded by a certain
value. Therefore it is recommended prior running the deconvolution procedure to add a quite zone
to the acceleration record (using option Add zeros left ). Duration of this quiet zone can easily

be estimated as fraction
H

vs
(H is a subsoil depth while vs is a shear wave velocity). In this example

0.5s was added to the record (see figure).
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Data set for deconvolution procedure is shown in the figure below (data in the second row corre-
sponds to the bedrock, although for rigid base model it is not meaningful).
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Data setup for deconvolution of Loma Prieta signal from surface to the base of FE model
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By applying the deconvoluted signal at the base we expect that the computed acceleration (at
surface) will fully be compatible with the original signal. In this benchmark a 50m deep soil layer
resting on a rigid bedrock is analyzed. The two ways of application of an earthquake to the finite
element model are analyzed. In the first model imposed accelerations are applied at two nodes at the
base (absolute format set at the level of boundary conditions) while in the second one acceleration
is applied as global to the whole structure (while bottom nodes remain fixed)(relative format, set
using Seismic input option). It should be mentioned that results of both models must properly be
analyzed because first model yields total accelerations at nodes while the second one relative with
respect to the rigid base. Comparizon that is made here refers to global accelerations. Material
data for this example is as follows: E = 1250000 kPa, ν = 0.25, γ = 20 kN/m3, Rayleigh damping
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parameters αo = 1.88496 and βo = 0.00397887. HHT integration scheme is used with time step
∆t = 0.01 s. Discretization and boundary conditions are shown in the figure below. At all nodes,
except base ones, periodic boundary condition is used to represent shear layer deformation mode.
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Imposed acceleration ax at
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Comparizon of analytical and numerical solutions shows an excellent agreement.
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6.8.5 Convolution analysis for damped soil layer on compliant base

Files:
DYN-TR-Layer-50m-compliant-base-damp-E1.inp,
DYN-TR-Layer-50m-compliant-base-damp-E2.inp,
DYN-TR-Layer-50m-compliant-base-damp-E3.inp,
DYN-TR-Layer-50m-rigid-base-damp.inp

The convolution analysis (transfer of the signal from base to the surface) of Loma Prieta seismic
acceleration record (LomaPrieta-18-10-1989-Station-Corralitos) for a 50m deep soil layer resting
on a compliant bedrock is the aim of this benchmark. The original signal is filtered with 10 Hz
low pass Butterworth filter and baseline corrected. In all these examples imposed accelerations are
applied at two nodes at the base (absolute format set at the level of boundary conditions). Results
comparizon that is made here refers to total accelerations. To avoid initial state computation
multiplier for body forces is set to zero (at material level for subsoil in group ⊠ Unit weights ).

Material data for soil layer is as follows: E = 205000 kPa, ν = 0.25, γ = 20 kN/m3, Rayleigh
damping parameters αo = 1.88496 and βo = 0.00397887. HHT integration scheme is used with
time step ∆t = 0.01 s. Mesh and boundary conditions are shown in figure below. To check whether
compliant base model converges to the rigid base one a parametric study was carried out for 3
different sets of elastic parameters for bedrock ie. E = E1 = 2000000 kPa, E = E2 = 30000000
kPa and E = E3 = 30000000000 kPa. In all cases bedrock Poisson’s ratio ν = 0.25 and γ = 23
kN/m3. Note that the elastic halfspace is represented here by the viscous damper (with bedrock
properties).

Rigid base model Compliant base model

Periodic BC
uA=uB

A50m B A B

Viscous damper

Imposed acceleration ax at
nodal points at base

Acceleration integrated to velocities
and then converted to boundary traction

Rigid base and compliant base model
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The above figures indicate that the compliant base model converges to the rigid one but for bedrock
stiffness that is very large and usually far away from the real values measured in experiments.
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6.8.6 Rigid vs compliant base models

Files:
DYN-TR-3Layers-compliant-base-damp.inp,
DYN-TR-3Layers-compliant-base-damp-spurious.inp,
DYN-TR-3Layers-rigid-base-damp.inp,
DYN-TR-3Layers-rigid-base-damp-spurious.inp

In this benchmark we will perform deconvolution analysis of LomaPrieta-18-10-1989-Station-Corralitos
signal from surface to the base of two models ie. rigid base and compliant base one. Then this
signal will be applied at the base of aforementioned two models and convolution analysis will be
carried out but with small (10%) perturbation of shear wave velocity in the first soil layer. The
main goal is to assess sensitivity of the two models to the introduced error. This analysis is carried
out for a system shown in the figure below. Each layer is discretized using 40 Q4 elements (element
size is 0.5m). Earthquake record in the rigid base model is defined through the imposed boundary
conditions (imposed acceleration ax) while in the compliant base model signal is introduced through

Seismic input option and ⊚ Compliant base model set ON. This way computed accelerations
in both cases are total ones. At all nodes, except base ones, periodic boundary condition is used to
represent shear layer deformation mode.

E 100000 kP 0 25 17 kN/ 3

Target signal

20m
E=100000 kPa, v=0.25, =17 kN/m3

=0.167552, =0.000531  
vs=152 m/s

Soil‐1

20m E=200000 kPa, v=0.25, =18 kN/m3

 =0 167552  =0 000531
Soil‐2

=0.167552, =0.000531 
vs=209 m/s

20m E=1000000 kPa, v=0.25, =23 kN/m3

=0.167552, =0.000531 
vs=413 m/s

bedrock

Halfspace
E=1000000 kPa, v=0.25, =23 kN/m3

=0.167552, =0.000531  
vs=413 m/s

Layered system

The original signal (LomaPrieta-18-10-1989-Station-Corralitos) is filtered with 10 Hz low pass But-
terworth filter and baseline corrected first, then deconvolution procedure is run from Acceleration

time history toolbox. As the acceleration record shows significant nonzero values from the very
begining, therefore it is recommended to add a quite zone using option Add zeros left . In this
example 0.5s was added to the record (see figure).
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Data set for deconvolution procedure for rigid and compliant base models are shown in figures below
(data in the fourth row corresponds to the elastic halfspace, although for rigid base model it is not
meaningful).

Data setup for deconvolution of Loma Prieta signal from surface to the base of rigid base FE
model
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Signal after deconvolution for rigid base model
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Data setup for deconvolution of Loma Prieta signal from surface to the base of compliant base FE
model
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Comparizon of target earthquake record and computed one for rigid base and compliant base models
are shown in next two figures.
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Comparizon of target earthquake record and computed one for rigid base and compliant base models
including stiffness perturbation in the first layer (E1 = 81000 kPa) are shown in next two figures.
One may observe that compliant base model is relatively insensitive to the introduced error while
rigid base one shows significant discrepancies after 8s of shaking. This effect becomes very strong
for low level of material damping.
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